Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In view of the global climate change, heat stress is an increasing constraint for the productivity of wheat (Triticum aestivum L.). Our aim was to identify contrasting cultivars in terms of heat tolerance by mass screening of 1274 wheat cultivars of diverse origin, based on a physiological trait, the maximum quantum efficiency of PSII (Fv/Fm). A chlorophyll fluorescence protocol was standardised and used for repeated screening with increased selection pressure with a view to identifying a set of cultivars extreme for the trait. An initial mass screening of 1274 wheat cultivars with a milder heat stress of 38°C in 300µmolm-2s-1 for 2h with preheating at 33-35°C for 19h in 7-14µmolm-2s-1 light showed a genetic determination of 8.5±2.7%. A heat treatment of 40°C in 300µmolm-2s-1 for 72h in the second screening with 138 selected cultivars resulted in larger differentiation of cultivars with an increased genetic component (15.4±3.6%), which was further increased to 27.9±6.8% in the third screening with 41 contrasting cultivars. This contrasting set of cultivars was then used to compare the ability of chlorophyll fluorescence parameters to detect genetic difference in heat tolerance. The identification of a set of wheat cultivars contrasting for their inherent photochemical efficiency may aid future studies to understand the genetic and physiological nature of heat stress tolerance in order to dissect quantitative traits into simpler genetic factors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1071/FP12100 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!