Most high-throughput systems for automated plant phenotyping involve a fixed recording cabinet to which plants are transported. However, important greenhouse plants like pepper are too tall to be transported. In this research we developed a system to automatically measure plant characteristics of tall pepper plants in the greenhouse. With a device equipped with multiple cameras, images of plants are recorded at a 5cm interval over a height of 3m. Two types of features are extracted: (1) features from a 3D reconstruction of the plant canopy; and (2) statistical features derived directly from RGB images. The experiment comprised 151 genotypes of a recombinant inbred population of pepper, to examine the heritability and quantitative trait loci (QTL) of the features. Features extracted from the 3D reconstruction of the canopy were leaf size and leaf angle, with heritabilities of 0.70 and 0.56 respectively. Three QTL were found for leaf size, and one for leaf angle. From the statistical features, plant height showed a good correlation (0.93) with manual measurements, and QTL were in accordance with QTL of manual measurements. For total leaf area, the heritability was 0.55, and two of the three QTL found by manual measurement were found by image analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1071/FP12019DOI Listing

Publication Analysis

Top Keywords

pepper plants
8
plants greenhouse
8
features extracted
8
statistical features
8
leaf size
8
size leaf
8
leaf angle
8
three qtl
8
manual measurements
8
qtl manual
8

Similar Publications

Global Potential Geographic Distribution of Anthonomus eugenii Under Climate Change: A Comprehensive Analysis Based on an Ensemble Modeling Approach.

Neotrop Entomol

January 2025

State Key Lab for Biology of Plant Diseases and Insect Pests, Key Lab of Invasive Alien Species Control of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.

Climate warming is affecting the ranges and population dynamics of invasive species, including insects, which have become a global problem, causing biodiversity declines and agricultural economic losses. Anthonomus eugenii as an important invasive pest on pepper is now mainly located in the USA and Mexico. However, the global potential geographic distribution (PGD) of A.

View Article and Find Full Text PDF

Spatiotemporal Variability of the Pepper Mild Mottle Virus Biomarker in Wastewater.

ACS ES T Water

January 2025

Department of Statistics & Data Science, Dietrich College of Humanities and Social Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.

Since the start of the coronavirus-19 pandemic, the use of wastewater-based epidemiology (WBE) for disease surveillance has increased throughout the world. Because wastewater measurements are affected by external factors, processing WBE data typically includes a normalization step in order to adjust wastewater measurements (e.g.

View Article and Find Full Text PDF

The evolving threat of new pathogen variants in the face of global environmental changes poses a risk to a sustainable crop production. Predicting and responding to how climate change affects plant-pathosystems is challenging, as environment affects host-pathogen interactions from molecular to the community level, and with eco-evolutionary feedbacks at play. To address this knowledge gap, we studied short-term within-host eco-evolutionary changes in the pathogen, , on resistant and susceptible pepper in the open-top chambers (OTCs) under elevated Ozone (O) conditions in a single growing season.

View Article and Find Full Text PDF

Piperine is an amide alkaloid isolated from the black pepper plant. This study examined the pain‑relieving activity of piperine against paclitaxel (PTX)‑induced neuropathy. Male mice were divided into 6 groups: Sham‑operated group (remained intact), PTX group (PTX‑treated mice receiving normal saline), PTX+ piperine 10, 25, and 50 mg/kg groups (PTX‑treated mice receiving piperine) and positive control group (PTX‑treated mice receiving imipramine 10 mg/kg).

View Article and Find Full Text PDF

In the cultivation of green chili peppers, the similarity between the fruit and background color, along with severe occlusion between fruits and leaves, significantly reduces the efficiency of harvesting robots. While increasing model depth can enhance detection accuracy, complex models are often difficult to deploy on low-cost agricultural devices. This paper presents an improved lightweight Pepper-YOLO model based on YOLOv8n-Pose, designed for simultaneous detection of green chili peppers and picking points.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!