Hydraulic lift (HL) - the passive movement of water through plant roots from deep wet to shallow drier soil layers - can improve root survival in dry soils by providing a source of moisture to shallow roots. It may also enhance plant nutrient capture, though empirical evidence for this is scarce and whether HL promotes the selective placement of roots in nutrient-rich soil enhancing nutrient capture in dry soils remains unknown. We tested this with a split-pot design in which we separated the root system of Retama sphaerocarpa (L.) Boiss shrubs into two pot compartments: a lower, well-watered one; and an upper, drier one. Half the shrubs grew under natural light conditions hence allowed to perform HL, whereas the other half had impaired HL by maintaining continuous illumination at night. Resource-rich (organic matter enriched in 15N and P) and resource-poor soil patches were inserted in the upper compartment after a drought treatment was imposed. Artificial illumination did impair HL at night. Soil moisture in both the whole upper compartment and in soil patches was lower in plants illuminated at night and reduced the allocation of roots to nutrient-rich soil patches at the expense of root growth in nutrient-poor patches (i.e. root foraging precision). Plant nitrogen capture was also lower in shrubs with impaired HL. Overall, these results demonstrate that HL favoured the selective placement of roots in nutrient-rich patches as well as nutrient capture under drought, a process that may secure nutrient capture and maintain plant performance during drought periods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1071/FP12070 | DOI Listing |
Sensors (Basel)
January 2025
School of Computing, Mathematics and Engineering, Charles Sturt University, Bathurst, NSW 2795, Australia.
Soil colour is a key indicator of soil health and the associated properties. In agriculture, soil colour provides farmers and advises with a visual guide to interpret soil functions and performance. Munsell colour charts have been used to determine soil colour for many years, but the process is fallible, as it depends on the user's perception.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.
Tree Physiol
December 2024
Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83 Umeå.
Isotopic pulse-labelling of photosynthate allows tracing of carbon (C) from tree canopies to belowground biota and calculations of its turnover in roots and recipient soil microorganisms. A high concentration of label is desirable, but is difficult to achieve in field studies of intact ecosystem patches with trees. Moreover, root systems of trees overlap considerably in most forests, which requires a large labelled area to minimize the impact of C allocated belowground by un-labelled trees.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
October 2024
Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Benggang (collapsing hill) erosion is one of the most serious ecological problems in the south of China. Understanding the relationship between Benggang erosion and landscape pattern is conducive to the study of Benggang occurrence and development from the perspective of landscape ecology, with great significance for Benggang prevention and ecological protection. We classified the Lanxi River Basin in Anxi County, Fujian Province into 32 small watersheds.
View Article and Find Full Text PDFPeerJ
December 2024
College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China.
In this study, experiments were conducted on soil samples collected from depths of 0-15 cm, 15-30 cm, and 30-50 cm at the National Long-term Scientific Research Base for the Comprehensive Management of Rocky Desertification in the Wuling Mountains. The aim was to determine the physicochemical indexes and explore the nature and spatial heterogeneity of the soil of the planted mixed forests within the rocky desertification area of the Wuling Mountain. Various analytical methods were employed, including descriptive statistical analysis, correlation analysis, analysis of variance, principal component analysis, spatial interpolation analysis, and kriging interpolation, to fit the optimal model of the semi-variance function of soil physicochemical properties and analyze the model's parameters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!