Leaf gas film retention during submergence of 14 cultivars of wheat (Triticum aestivum).

Funct Plant Biol

Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, 3rd floor, 2100 Copenhagen, Denmark.

Published: September 2017

Flooding of fields after sudden rainfall events can result in crops being completely submerged. Some terrestrial plants, including wheat (Triticum aestivum L.), possess superhydrophobic leaf surfaces that retain a thin gas film when submerged, and the gas films enhance gas exchange with the floodwater. However, the leaves lose their hydrophobicity during submergence, and the gas films subsequently disappear. We tested gas film retention time of 14 different wheat cultivars and found that wheat could retain the gas films for a minimum of 2 days, whereas the wild wetland grass Glyceria fluitans (L.) R.Br. had thicker gas films and could retain its gas films for a minimum of 4 days. Scanning electron microscopy showed that the wheat cultivars and G. fluitans possessed high densities of epicuticular wax platelets, which could explain their superhydrophobicity. However, G. fluitans also had papillae that contributed to higher hydrophobicity during the initial submergence and could explain why G. fluitans retained gas films for a longer period of time. The loss of gas films was associated with the leaves being covered by an unidentified substance. We suggest that leaf gas film is a relevant trait to use as a selection criterion to improve the flood tolerance of crops that become temporarily submerged.

Download full-text PDF

Source
http://dx.doi.org/10.1071/FP16401DOI Listing

Publication Analysis

Top Keywords

gas films
28
gas film
16
gas
11
leaf gas
8
film retention
8
cultivars wheat
8
wheat triticum
8
triticum aestivum
8
wheat cultivars
8
retain gas
8

Similar Publications

Structure and properties of chitosan plasticized with hydrophobic short-chain fatty acid cosolvent.

Int J Biol Macromol

January 2025

Research Institute of Interdisciplinary Science, School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Extreme Conditions, Dongguan 523803, China. Electronic address:

The application of chitosan in packaging has always been limited due to its brittle and hygroscopic nature. In this study, hydrophobic short-chain fatty acids (SCFAs) were utilized to modify chitosan to overcome this issue. For the first time, hydrophobic SCFAs, typically hexanoic acid and its homologs, were found to be able to dissolve chitosan in water as well as its hydrophilic analog.

View Article and Find Full Text PDF

Optimization Study of a High-Efficiency Preservative for Ammonia-Free Concentrated Natural Rubber Latex.

Polymers (Basel)

January 2025

Hainan Natural Rubber Technology Innovation Center, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.

Ammonia is commonly used as a preservative in the production of concentrated natural rubber latex (CNRL) and latex products; however, it poses a serious risk to human health and the environment. In this study, we investigated a thioacetamide derivative (TD) as a preservative of ammonia-free CNRL and the optimization of a stabilization system comprising potassium hydroxide (KOH), lauric acid (LA), and sodium dodecyl sulfate (SDS) to enhance its preservation effect. The results revealed that an optimal amount of TD (0.

View Article and Find Full Text PDF

Transparent X-ray shielding polymer films were developed by bulk photo copolymerization of in situ prepared bismuth carboxylate prepolymers with polymerizable exomethylene moieties and ,-dimethylacrylamide (DMAA). The bismuth-containing prepolymers were prepared via the polycondensation of BiPh, 2-octenylsuccinic acid (OSA), and itaconic acid (IA) bearing an exomethylene group for polymerization. OSA was a chain extender by intermolecular condensation and a stopper by intramolecular cyclization to inhibit cross-linkage.

View Article and Find Full Text PDF

One of the challenging problems in the research and development of vibration sensors relates to the formation of Ohmic contacts for the removal of an electrical signal. In some cases, it is proposed to use arrays of carbon nanotubes (CNTs), which can serve as highly elastic electrode materials for vibration sensors. The purpose of this work is to study the effect of a current-collecting layer of CNTs grown over silicon on the properties of a lead zirconate titanate (PZT) film, which is frequently employed in mechanical vibration sensors or energy harvesters.

View Article and Find Full Text PDF

One of the main limitations of biopolymers compared to petroleum-based polymers is their weak mechanical and physical properties. Recent improvements focused on surmounting these constraints by integrating nanoparticles into biopolymer films to improve their efficacy. This study aimed to improve the properties of gelatin-chitosan-based biopolymer layers using zinc oxide (ZnO) and graphene oxide (GO) nanoparticles combined with spermidine to enhance their mechanical, physical, and thermal properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!