Flooding and low oxygen responses in plants.

Funct Plant Biol

Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.

Published: September 2017

The world is currently experiencing dramatic increases in flood events impacting on natural vegetation and crops. Flooding often results in low O2 status in root tissues during waterlogging, but sometimes also in shoot tissues when plants become completely submerged. Plants possess a suite of traits enabling tissue aeration and/or adjusted metabolism during hypoxia or even in the absence of O2. This special issue of Functional Plant Biology presents key papers for plant scientists on the quest to further address and improve flood tolerance of terrestrial plants. The papers address low O2 responses in roots, shoots or whole plants in controlled laboratory conditions or in the field situation using natural wetland plants as models as well as economically important crops, such as rice, wheat and barley. The studies advance our understanding of low O2 responses in plant tissues as caused by O2 shortage during flooding. However, in most instances, submergence not only leads to hypoxic or anoxic tissues, but inundation in water also results in accumulation of CO2 and the important plant hormone ethylene. Thus, carefully designed laboratory studies are often needed to unravel the mechanistic relationships between a combined decline in O2 followed by increases in CO2 and ethylene at tissue as well as on the cellular level.

Download full-text PDF

Source
http://dx.doi.org/10.1071/FPv44n9_FODOI Listing

Publication Analysis

Top Keywords

flooding low
8
low responses
8
plants
6
low oxygen
4
oxygen responses
4
responses plants
4
plants currently
4
currently experiencing
4
experiencing dramatic
4
dramatic increases
4

Similar Publications

The transportation industry contributes significantly to climate change through carbon dioxide ( ) emissions, intensifying global warming and leading to more frequent and severe weather phenomena such as flooding, drought, heat waves, glacier melting, and rising sea levels. This study proposes a comprehensive approach for predicting emissions from vehicles using deep learning techniques enhanced by eXplainable Artificial Intelligence (XAI) methods. Utilizing a dataset from the Canadian government's official open data portal, we explored the impact of various vehicle attributes on emissions.

View Article and Find Full Text PDF

How do extreme fluctuations in water level affect fish condition in Amazonian Floodplain Lakes?

J Fish Biol

January 2025

Chair of Hydrobiology and Fisheries, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia.

The annual flood pulse is a defining feature of Amazonian floodplain lakes, creating a highly variable environment that influences resource availability, such as food and habitat. These cyclical changes necessitate a high degree of adaptability among fish species, many of which have evolved specialized strategies to cope with the fluctuating conditions. In 2023, the Amazon basin experienced a record-breaking drought event, leading to mass mortality of Amazonian fish and other wildlife.

View Article and Find Full Text PDF

Background: Early identification and quantification of core infarct is of importance in stroke management for treatment selection, prognostication, and complication prediction. Non-contrast computed tomography (CT) (NCCT) remains the primary tool, but it suffers from limited sensitivity and inter-rater variability; CT perfusion is inconsistently available and commonly blighted by movement artefact. We assessed the performance of a standardised form of CT angiographic source imaging (CTASI) obtained through addition of a delayed phase at 40 seconds post-contrast injection (DP40) following fast-acquisition CT angiography.

View Article and Find Full Text PDF

Significance: Laparoscopic surgery presents challenges in localizing oncological margins due to poor contrast between healthy and malignant tissues. Optical properties can uniquely identify various tissue types and disease states with high sensitivity and specificity, making it a promising tool for surgical guidance. Although spatial frequency domain imaging (SFDI) effectively measures quantitative optical properties, its deployment in laparoscopy is challenging due to the constrained imaging environment.

View Article and Find Full Text PDF

Unlabelled: Various studies predict large migration flows due to climatic and other environmental changes, yet the ex post empirical evidence for such migration is inconclusive. To examine the causal link between environmental changes and migration for a population residing along the Jamuna River in Bangladesh, an area heavily affected by floods and riverbank erosion, I relate the respondents' self-reported affectedness by environmental changes, their migration aspirations, and their capability to move to their migration likelihood. The analysis relies on a unique quasi-experimental research design based on original survey panel data of 1604 household heads.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!