A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Photosynthetic acclimation to elevated CO concentration in a sweet pepper (Capsicum annuum) crop under Mediterranean greenhouse conditions: influence of the nitrogen source and salinity. | LitMetric

In many plant species, long-term exposure to elevated CO2 concentration results in a reduction in photosynthetic capacity, known as acclimation. This process is mainly explained by a feedback inhibition mechanism. The supply of a fraction of the nitrogen (N) in the nutrient solution as NH4+ can play an important role in the maintenance of photosynthetic activity and could mitigate the acclimation process. The aims of the present work were to study the photosynthetic response of sweet pepper (Capsicum annuum L.) to CO2 enrichment in Mediterranean greenhouse conditions, throughout the crop growth cycle and to evaluate the supply of NH4+ in the nutrient solution as a strategy to enhance the long-term response to CO2 at different levels of salinity. The experiment was conducted in two identical greenhouses: one with CO2 enrichment according to the ventilation, maintaining a high concentration when the vents were closed and a near-atmospheric level when the vents were open and one without. Sweet pepper plants were grown in both greenhouses, being irrigated with two levels of water salinity and two N sources: (i) NO3- and (ii) NO3- plus NH4+. A reduction in the response of photosynthesis to high CO2 concentration was found in the enriched plants after 135 days of CO2 supply, with respect to the reference plants. The leaf photosynthesis rate measured at high CO2 concentration showed a closer relationship with the leaf N concentration than the non-structural carbohydrate concentration. The relative yield gain of the CO2-enriched plants progressively decreased after reaching a maximum value; this was probably associated with the photosynthetic acclimation process. This decrease was delayed by the use of NH4+ in the nutrient solution at low salinity. Knowledge of the crop phase when acclimation to high CO2 concentration occurs can be the basis for deciding when to impose an early cessation of CO2 application, as a strategy to improve the economic efficiency of CO2 supply in Mediterranean conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1071/FP16362DOI Listing

Publication Analysis

Top Keywords

co2 concentration
16
sweet pepper
12
acclimation process
12
nutrient solution
12
high co2
12
co2
10
photosynthetic acclimation
8
concentration
8
pepper capsicum
8
capsicum annuum
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!