Defence mechanisms associated with mycorrhiza-induced resistance in wheat against powdery mildew.

Funct Plant Biol

Univ Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, F-62228 Calais cedex, France.

Published: April 2017

AI Article Synopsis

  • The study explored how the arbuscular mycorrhizal fungus Funneliformis mosseae can enhance the resistance of wheat against the foliar pathogen Blumeria graminis, reducing infection by 78%.
  • The investigation revealed that mycorrhizal inoculation triggered systemic resistance in wheat leaves, linked to fewer haustoria forming and an increase in protective compounds at infection sites.
  • Gene expression analysis indicated that mycorrhizal wheat showed elevated defense marker genes even in the absence of the pathogen, suggesting a mycorrhiza-induced resistance (MIR) rather than just a primed response.

Article Abstract

To develop a more sustainable agriculture using alternative control strategies, mechanisms involved in the biocontrol ability of the arbuscular mycorrhizal fungus Funneliformis mosseae to protect wheat against the foliar biotrophic pathogen Blumeria graminis f. sp. tritici were investigated under controlled conditions. B. graminis infection on wheat leaves was reduced by 78% in mycorrhizal plants compared with non-mycorrhizal ones (control). Wheat roots inoculated with F. mosseae revealed a systemic resistance in leaves to B. graminis, after a 6-week co-culture. Accordingly, this resistance was associated with a significant reduction of B. graminis haustorium formation in epidermal leaf cells of mycorrhizal wheat and an accumulation of phenolic compounds and H2O2 at B. graminis penetration sites. Moreover, gene expression analysis demonstrated upregulation of genes encoding for several defence markers, such as peroxidase, phenylalanine ammonia lyase, chitinase 1 and nonexpressor of pathogenesis-related proteins 1 in mycorrhizal wheat only in the absence of the pathogen. This study showed that protection of wheat obtained against B. graminis in response to mycorrhizal inoculation by F. mosseae could be interpreted as a mycorrhiza-induced resistance (MIR). Our findings also suggest that MIR-associated mechanisms impaired the B. graminis development process and corresponded to a systemic elicitation of plant defences rather than a primed state in wheat leaves.

Download full-text PDF

Source
http://dx.doi.org/10.1071/FP16206DOI Listing

Publication Analysis

Top Keywords

mycorrhiza-induced resistance
8
wheat
8
wheat leaves
8
mycorrhizal wheat
8
graminis
7
mycorrhizal
5
defence mechanisms
4
mechanisms associated
4
associated mycorrhiza-induced
4
resistance
4

Similar Publications

Hormonal signalling plays an elementary role in the regulation of plant-microbe interactions. Jasmonic acid (JA) signalling is one of the major regulators that decides the fate of these interactions in plants. However, the role of JA is not unanimous and varies from neutral to positive or negative regulation.

View Article and Find Full Text PDF

Arbuscular mycorrhizal (AM) symbiosis is the oldest and most widespread mutualistic association on Earth and involves plants and soil fungi belonging to Glomeromycotina. A complex molecular, cellular, and genetic developmental program enables partner recognition, fungal accommodation in plant tissues, and activation of symbiotic functions such as transfer of phosphorus in exchange for carbohydrates and lipids. AM fungi, as ancient obligate biotrophs, have evolved strategies to circumvent plant defense responses to guarantee an intimate and long-lasting mutualism.

View Article and Find Full Text PDF

Mycorrhiza-induced resistance in citrus against Tetranychus urticae is plant species dependent and inversely correlated to basal immunity.

Pest Manag Sci

July 2024

Plant Immunity and Biochemistry Laboratory, Biology, Biochemistry and Natural Sciences, Unidad Asociada al Consejo Superior de Investigaciones Científicas, Universitat Jaume I, Castelló, Spain.

Background: Mycorrhizal plants show enhanced resistance to biotic stresses, but few studies have addressed mycorrhiza-induced resistance (MIR) against biotic challenges in woody plants, particularly citrus. Here we present a comparative study of two citrus species, Citrus aurantium, which is resistant to Tetranychus urticae, and Citrus reshni, which is highly susceptible to T. urticae.

View Article and Find Full Text PDF

Introduction: Arbuscular mycorrhizal fungi (AMF) belong to the Glomeromycota clade and can form root symbioses with 80% of Angiosperms, including crops species such as wheat, maize and rice. By increasing nutrient availability, uptake and soil anchoring of plants, AMF can improve plant's growth and tolerance to abiotic stresses. AMF can also reduce symptoms and pathogen load on infected plants, both locally and systemically, through a phenomenon called mycorrhiza induced resistance (MIR).

View Article and Find Full Text PDF

Plants simultaneously interact with belowground symbionts such as arbuscular mycorrhizal (AM) fungi and aboveground antagonists such as aphids. Generally, plants gain access to valuable resources including nutrients and water through the AM symbiosis and are more resistant to pests. Nevertheless, aphids' performance improves on mycorrhizal plants, and it remains unclear whether a more nutritious food source and/or attenuated defenses are the contributing factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!