A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Aluminium-inhibited NO uptake is related to Al-increased HO content and Al-decreased plasma membrane ATPase activity in the root tips of Al-sensitive black soybean. | LitMetric

In this study, Al-sensitive black soybean (Glycine max (L.) Merr.) specimens were treated in Hoagland solutions containing 50-400µM Al for 1-4 days. The measurement for NO3- uptake showed that the NO3- uptake decreased gradually as the Al concentration and treatment time increased, suggesting that Al stress significantly reduced the NO3- uptake by soybean. Under 100-µM Al stress for 4 days, the plasma membrane (PM) ATPase activity (inorganic phosphate (Pi) release), H+ pump activity, phosphorylation of PM ATPase and its interaction with 14-3-3 protein in soybean root tips were all smaller than those in the root tips of control plants. The addition of 150µM Mg2+ in Al treatment solutions significantly alleviated the Al inhibition of NO3- uptake in soybean. The presence of Mg2+ in a 100-µM Al solution pronouncedly enhanced PM ATPase activity, H+ pump activity, phosphorylation of PM ATPase and its interaction with 14-3-3 protein in soybean root tips. The application of 2mM ascorbic acid (AsA, an H2O2 scavenger) in Al treatment solutions significantly decreased Al-inhibited NO3- uptake in soybean. The cotreatment of soybeans with 2mM AsA and 100µM Al significantly reduced H2O2 accumulation and increased the PM ATPase activity, H+ pump activity, phosphorylation of PM H+-ATPase and its interaction with 14-3-3 protein in soybean root tips. The evidence suggested that Al-inhibited NO3- uptake is related to Al-increased H2O2 content and Al-decreased phosphorylation of PM ATPase and its interaction with 14-3-3 protein as well as PM ATPase activity in the root tips of soybean.

Download full-text PDF

Source
http://dx.doi.org/10.1071/FP15289DOI Listing

Publication Analysis

Top Keywords

root tips
24
no3- uptake
24
atpase activity
20
interaction 14-3-3
16
14-3-3 protein
16
uptake soybean
12
pump activity
12
activity phosphorylation
12
phosphorylation atpase
12
atpase interaction
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!