The main objective of this work was to provide the chronology of physiological and metabolic alterations occurring under drought and demonstrate how these relate to a phenotypic approach (infrared thermal imaging, IRT). This should provide tools to tailor phenotyping approaches for drought tolerance and underlying metabolic alterations. In the present study, destructive analysis of growth and cell morphology, water status, osmotic adjustment, metabolic changes and membrane damage were combined with non-destructive determination of leaf temperature using infrared thermography (IRT) in 6-week-old sugar beets subjected to progressive drought stress and subsequent rewatering. Different methods were suitable for the characterisation of the dynamic development of distinct stress phases: although IRT allowed detection of initial impairment of transpiration within 1 day of drought stress, destructive methods allowed us to distinguish a phase of metabolic adjustment including redirection of carbon flow into protective mechanisms and a subsequent phase of membrane destabilisation and cellular damage. Only the combination of invasive and non-invasive methods allowed for the differentiation of the complete sequence of physiological changes induced by drought stress. This could be especially beneficial for the selection of phenotypes that are adapted to early drought. During rewatering, sugar beet shoots rapidly re-established water relations, but membrane damage and partial stomatal closure persisted longer, which could have an impact on subsequent stress events. During the onset of secondary growth, taproots required more time to recover the water status and to readjust primary metabolites than shoots.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1071/FP16112 | DOI Listing |
BMC Plant Biol
January 2025
Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China.
Background: Drought stress is a major environmental constraint affecting crop yields. Plants in agricultural and natural environments have developed various mechanisms to cope with drought stress. Identifying genes associated with drought stress tolerance in potato and elucidating their regulatory mechanisms is crucial for the breeding of new potato germplasms.
View Article and Find Full Text PDFPLoS One
January 2025
Département des Sciences Naturelles, Institut des Sciences de la Forêt Tempérée (ISFORT), Université du Québec en Outaouais (UQO), Ripon, Canada.
Forests face an escalating threat from the increasing frequency of extreme drought events driven by climate change. To address this challenge, it is crucial to understand how widely distributed species of economic or ecological importance may respond to drought stress. In this study, we examined the transcriptome of white spruce (Picea glauca (Moench) Voss) to identify key genes and metabolic pathways involved in the species' response to water stress.
View Article and Find Full Text PDFFront Genet
December 2024
School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China.
Acylation represents a pivotal biochemical process that is instrumental in the modification of secondary metabolites throughout the growth and developmental stages of plants. The BAHD acyltransferase family within the plant kingdom predominantly utilizes coenzyme A thioester as the acyl donor, while employing alcohol or amine compounds as the acceptor substrates to facilitate acylation reactions. Using bioinformatics approaches, the gene family members in the genome of () were identified and characterized including gene structure, conserved motifs, -acting elements, and potential gene functions.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy.
The impact of combined heat and drought stress was investigated in and compared to individual stresses to reveal additive effects and interactions. A combination of plant metabolomics and root and rhizosphere bacterial metabarcoding were used to unravel effects at the plant holobiont level. Hierarchical cluster analysis of metabolomics signatures pointed out two main clusters, one including heat and combined heat and drought, and the second cluster that included the control and drought treatments.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Agronomy Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt.
Drought stress significantly impacts wheat productivity, but plant growth regulators may help mitigate these effects. This study examined the influence of gibberellic acid (GA3) and abscisic acid (ABA) on wheat (Triticum aestivum L., CV: Giza 171) growth and yield under different water regimes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!