Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The rise in atmospheric CO2 concentration ([CO2]) has been accompanied by changes in other environmental factors of global climate change, such as drought. Tracking the early growth of plants under changing conditions can determine their ecophysiological adjustments and the consequences for ecosystem functions. This study investigated long-term ecophysiological responses in three woody Cerrado species: Hymenaea stigonocarpa Mart. ex Hayne, Solanum lycocarpum A. St.-Hil. and Tabebuia aurea (Silva Manso) Benth. and Hook. f. ex S. Moore, grown under ambient and elevated [CO2]. Plants were grown for 515 days at ambient (430mgdm-3) or elevated [CO2] (700mgdm-3). Some plants were also subjected to water stress to investigate the synergy between atmospheric [CO2] and soil water availability, and its effect on plant growth. All three species showed an increase in maximum net photosynthesis (PN) and chlorophyll index under high [CO2]. Transpiration decreased in some species under high [CO2] despite daily watering and a corresponding increase in water use efficiency was observed. Plants grown under elevated [CO2] and watered daily had greater leaf area and total biomass production than plants under water stress and ambient [CO2]. The high chlorophyll and PN in cerrado plants grown under elevated [CO2] are an investment in light use and capture and higher Rubisco carboxylation rate, respectively. The elevated [CO2] had a positive influence on biomass accumulation in the cerrado species we studied, as predicted for plants under high [CO2]. So, even with water stress, Cerrado species under elevated [CO2] had better growth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1071/FP16138 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!