Phytophthora capsici is an oomycete pathogen with a broad host range that inflicts significant damage in vegetables. Phosphite (Phi) is used to control oomycete diseases, but the molecular mechanisms underlying Phi-induced resistance to P. capsici are unknown. Thus, Phi-inhibited mycelial growth on strain LT1534 and primed host defence were analysed. We demonstrated that Phi (>5µgmL-1) had a direct antibiotic effect on mycelial growth and zoospore production, and that mortality and DNA content were significantly reduced by pre-treatment with Phi. In addition, elevated hydrogen peroxide (H2O2) promoted callose deposition and increased the levels of soluble proteins and Capsicum annuum L. pathogenesis-related 1 (CaPR1) expression. Furthermore, Phi (1gL-1) significantly increased the transcription of the antioxidant enzyme genes, and the genes involved in ethylene (ET) and abscisic acid (ABA) biosynthesis, as well as mitogen-activated protein kinase (MAPK) cascades. However, pre-treatment with reactive oxygen species (ROS), ABA and ET biosynthesis inhibitors decreased Phi-induced resistance and reduced the expression of ABA-responsive 1 (CaABR1) and lipoxygenase 1 (CaLOX1). In addition, the decreased ROS and ABA inhibited Phi-induced expression of CaMPK17-1. We propose that Phi-induced ROS production, ET and ABA biosynthesis mediate the control of P. capsici, and that ABA functions through CaMPK17-1-mediated MAPK signalling.

Download full-text PDF

Source
http://dx.doi.org/10.1071/FP16006DOI Listing

Publication Analysis

Top Keywords

aba biosynthesis
16
reactive oxygen
8
oxygen species
8
biosynthesis mediate
8
mediate control
8
phytophthora capsici
8
capsicum annuum
8
phi-induced resistance
8
mycelial growth
8
ros aba
8

Similar Publications

A gene within a single subclade of NCED genes is triggered in response to both, short- and long-term dehydration treatments, in three model dicot species. During dehydration, some plants can rapidly synthesise the stress hormone abscisic acid (ABA) in leaves within 20 min, triggering the closure of stomata and limiting further water loss. This response is associated with significant transcriptional upregulation of Nine-cis-Epoxycarotenoid Dioxygenase (NCED) genes, which encode the enzyme considered to be rate-limiting in ABA biosynthesis.

View Article and Find Full Text PDF

Melatonin increases Pb tolerance in P. ovata seedlings via the regulation of growth and stress-related phytohormones, ROS scavenging and genes responsible for melatonin synthesis, metal chelation, and stress defense. Lead (Pb) is a highly toxic heavy metal that accumulates in plants through soil and air contamination and impairs its plant growth and development.

View Article and Find Full Text PDF

Spider silk, especially dragline silk from golden silk spiders (Trichonephila clavipes), is an excellent natural material with remarkable mechanical properties. Many studies have focused on the use of plants as biofactories for the production of recombinant spider silk. However, the effects of this material on the mechanical properties or physiology of transgenic plants remain poorly understood.

View Article and Find Full Text PDF

AhASRK1, a peanut dual-specificity kinase that activates the Ca-ROS-MAPK signalling cascade to mediate programmed cell death induced by aluminium toxicity via ABA.

Plant Physiol Biochem

January 2025

Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, College of Agriculture, GuangXi University, Nanning, 530004, China; National Demonstration Center for Experimental Plant Science Education/College of Agriculture, Nanning, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China. Electronic address:

Aluminium (Al)-induced programmed cell death (PCD) is thought to be a main cause of Al phytotoxicity. However, the underlying mechanism by which Al induces PCD in plants is unclear. In this study, we characterized the function of AhASRK1 (Aluminum Sensitive Receptor-like protein Kinase1), an Al-induced LRR-type receptor-like kinase gene.

View Article and Find Full Text PDF

A Study of the Different Strains of the Genus spp. on Increasing Productivity and Stress Resilience in Plants.

Plants (Basel)

January 2025

National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China.

One of the most important and essential components of sustainable agricultural production is biostimulants, which are emerging as a notable alternative of chemical-based products to mitigate soil contamination and environmental hazards. The most important modes of action of bacterial plant biostimulants on different plants are increasing disease resistance; activation of genes; production of chelating agents and organic acids; boosting quality through metabolome modulation; affecting the biosynthesis of phytochemicals; coordinating the activity of antioxidants and antioxidant enzymes; synthesis and accumulation of anthocyanins, vitamin C, and polyphenols; enhancing abiotic stress through cytokinin and abscisic acid (ABA) production; upregulation of stress-related genes; and the production of exopolysaccharides, secondary metabolites, and ACC deaminase. is a free-living bacterial genus which can promote the yield and growth of many species, with multiple modes of action which can vary on the basis of different climate and soil conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!