Isotopic evidence for nitrogen exchange between autotrophic and heterotrophic tissues in variegated leaves.

Funct Plant Biol

Research School of Biology, ANU College of Medicine, Biology and Environment, Australian National University, Canberra, ACT 2601, Australia.

Published: March 2016

Many plant species or cultivars form variegated leaves in which blades are made of green and white sectors. On the one hand, there is little photosynthetic CO2 assimilation in white tissue simply because of the lack of functional chloroplasts and thus, leaf white tissue is heterotrophic and fed by photosynthates exported by leaf green tissue. On the other hand, it has been previously shown that the white tissue is enriched in nitrogenous compounds such as amino acids and polyamines, which can, in turn, be remobilised upon nitrogen deficiency. However, the origin of organic nitrogen in leaf white tissue, including the possible requirement for N-reduction in leaf green tissue before export to white tissue, has not been examined. Here, we took advantage of isotopic methods to investigate the source of nitrogen in the white tissue. A survey of natural isotope abundance (δ15N) and elemental composition (%N) in various variegated species shows no visible difference between white and green tissues, suggesting a common N source. However, there is a tendency for N-rich white tissue to be naturally 15N-enriched whereas in the model species Pelargonium×hortorum, white sectors are naturally 15N-depleted, indicating that changes in metabolic composition and/or N-partitioning may occur. Isotopic labelling with 15N-nitrate on illuminated leaf discs clearly shows that the white tissue assimilates little nitrogen and thus relies on nitrate reduction and metabolism in the green tissue. The N-sink represented by the white tissue is considerable, accounting for nearly 50% of total assimilated nitrate.

Download full-text PDF

Source
http://dx.doi.org/10.1071/FP15187DOI Listing

Publication Analysis

Top Keywords

white tissue
36
white
12
tissue
12
green tissue
12
variegated leaves
8
white sectors
8
leaf white
8
leaf green
8
nitrogen
5
green
5

Similar Publications

Purpose: Describe aims, methods, characteristics of donors, donor corneas and recipients, and potential impact of the Diabetes Endothelial Keratoplasty Study (DEKS).

Methods: The DEKS is a randomized, clinical trial to assess graft success and endothelial cell density (ECD) 1 year after Descemet membrane endothelial keratoplasty (DMEK) using corneas from donors with versus without diabetes in a 1:2 minimization assignment. Diabetes severity in the donor is assessed by medical history, postmortem HbA1c, and donor skin advanced glycation end-products and oxidation markers.

View Article and Find Full Text PDF

Objectives: The progressive decline in interstitial lung disease associated with non-scleroderma connective tissue disease (ILD-NSCTD) is linked to poor prognosis and frequently results in respiratory failure. Lung transplantation (LTx) offers a viable treatment option, yet its outcomes in ILD-NSCTD remain contentious, particularly across different subtypes.

Methods: This retrospective cohort study included patients with idiopathic pulmonary fibrosis (IPF) (n=11,610) and ILD-NSCTD (n=610) listed in the United Network for Organ Sharing (UNOS) database who underwent lung transplantation between May 5, 2005, and December 31, 2022.

View Article and Find Full Text PDF

Bone Marrow Adipocytes as Novel Regulators of Metabolic Homeostasis: Clinical Consequences of Bone Marrow Adiposity.

Curr Obes Rep

January 2025

Maine Medical Center Research Institute, Maine Medical Center, 81 Research Drive, Scarborough, ME, 04074, USA.

Purpose Of Review: Bone marrow adipose tissue is a distinctive fat depot located within the skeleton, with the potential to influence both local and systemic metabolic processes. Although significant strides have been made in understanding bone marrow adipose tissue over the past decade, many questions remain regarding their precise lineage and functional roles.

Recent Findings: Recent studies have highlighted bone marrow adipose tissue's involvement in continuous cross-talk with other organs and systems, exerting both endocrine and paracrine functions that play a crucial role in metabolic homeostasis, skeletal remodeling, hematopoiesis, and the progression of bone metastases.

View Article and Find Full Text PDF

The hypothalamus integrates peripheral signals and modulates food intake and energy expenditure by regulating the metabolic function of peripheral tissues, including the liver and adipose tissue. In a previous study, we demonstrated that s-resistin, an intracellular resistin isoform highly expressed in the hypothalamus and upregulated during aging, is important in the central control of energy homeostasis, affecting mainly the peripheral response to insulin by still unknown mechanisms. Herein, using an intracerebroventricular injection of a specific lentiviral RNAi against s-resistin, we assessed, in the Wistar rat, the effects of central s-resistin downregulation on the expression and phosphorylation levels of intermediates involved in insulin signaling and the inflammatory response in epididymal white adipose tissue (eWAT) and liver.

View Article and Find Full Text PDF

This study examined the impacts of different LED spectra on the growth of in vitro cultures of Musa acuminata cv. red banana and their biochemical profile, including the antioxidant enzymes catalase and ascorbate peroxidase, photosynthetic pigment and accumulation of total carbohydrate content. The far-red LEDs significantly increase shoot elongation (10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!