A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Removal and recovery of silver nanoparticles by hierarchical mesoporous calcite: Performance, mechanism, and sustainable application. | LitMetric

Removal and recovery of silver nanoparticles by hierarchical mesoporous calcite: Performance, mechanism, and sustainable application.

Environ Res

CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China; CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, 230026, China. Electronic address:

Published: August 2020

The widespread use of silver nanoparticles (AgNPs) inevitably leads to the environmental release of AgNPs. The released AgNPs can pose ecological risks because of their specific toxicity. However, they can also be used as secondary sources of silver metal. Herein, hierarchical mesoporous calcite (HMC) was prepared and used to remove and recover AgNPs from an aqueous solution. The batch experiments show that the HMC has high removal percentages for polyvinylpyrrolidone- and poly (vinyl alcohol)-coated AgNPs (PVP- and PVA-AgNPs) over a wide pH range of 6-10. The adsorption isotherms indicate that the maximum removal capacities are 55 and 19 mg g for PVP-AgNPs and PVA-AgNPs, respectively, corresponding to partition coefficients (PCs) of 0.55 and 0.77 mg g μM. Furthermore, the removal performance is also not impaired by coexisting anions, such as Cl, NO, SO, and CO. Their removal mechanisms can be ascribed to the electrostatic attraction and chemical adsorption between the HMC and polymer-coated AgNPs. Calcium ions on the HMC surface serve as active sites for coordination with the oxygen-bearing functional groups of AgNP coatings. Moreover, the AgNPs adsorbed onto HMC show high catalytic activity and good reusability for the reduction of the organic pollutant 4-nitrophenol. This work may pave the way not only to remove metal nanopollutants from waters but also to convert them into functional materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2020.109699DOI Listing

Publication Analysis

Top Keywords

silver nanoparticles
8
hierarchical mesoporous
8
mesoporous calcite
8
hmc high
8
agnps
7
removal
5
hmc
5
removal recovery
4
recovery silver
4
nanoparticles hierarchical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!