A targeted and controlled drug delivery system based on β-cyclodextrin (β-CD) for encapsulation and controlled release of hydrophobic drugs in the presence of maltogenic amylase (MAase), as a cyclodextrin-hydrolyzing enzyme, and trastuzumab antibody has been developed. In this study, the inclusion complex of curcumin (CUR), as a model anticancer compound, with β-CD was prepared and we constructed an antibody-enzyme bioconjugate (dextran mediated MAase-Trastuzumab bioconjugate) for controlled and targeted release of CUR at HER2 positive cancer cells (including SKBR3 and BT474). Immunocytochemistry analysis indicated that the MAase-Trastuzumab bioconjugate had significant binding affinities to HER2 positive cancer cells and demonstrated high enzyme activity to degrade β-CD in order to rapid release of CUR on targeted cell surface. Fluorescence microscopy images and cytotoxicity studies represent significantly greater cellular uptake and anti-proliferative effects of CUR by β-CD-CUR/MAase-Trastuzumab bioconjugate compared to free CUR and β-CD-CUR in presence and absence of MAase in HER2 positive cells. The results from flow cytometric assay suggest that the β-CD-CUR/MAase-Trastuzumab conjugate exhibited higher cytotoxic and apoptotic effects on cancer cells compared to other formulation. We demonstrate that this formulation has a potential application for targeted and controlled release of drugs in cancer therapy with increased therapeutic efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2020.05.225 | DOI Listing |
Mol Biol Rep
January 2025
Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
Background: Exosomes are extracellular vesicles released by cells that mediate intercellular communication and actively participate in cancer progression, metastasis, and regulation of immune response within the tumour microenvironment. Inhibiting exosome release from cancer cells could be employed as a therapeutic against cancer.
Methods And Results: In the present study, we have studied the effects of Acorus calamus in inhibiting exosome secretion via targetting Rab27a and neutral sphingomyelinase 2 (nSMase2) in HER2-positive (MDA-MB-453), hormone receptor-positive (MCF-7) and triple-negative breast cancer (MDA-MB-231) cells.
Curr Pharm Des
January 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jazan University, P.O. Box 114 (Postal Code: 45142), Jazan, Kingdom of Saudi Arabia.
Aims: This study aims to identify and evaluate promising therapeutic proteins and compounds for breast cancer treatment through a comprehensive database search and molecular docking analysis.
Background: Breast cancer (BC), primarily originating from the terminal ductal-lobular unit of the breast, is the most prevalent form of cancer globally. In 2020, an estimated 2.
Future Oncol
January 2025
Real World Research, Ontada, Boston, MA, USA.
Aims: To investigate real-world treatment patterns and outcomes among patients with hormone receptor-positive/human epidermal growth factor 2-negative (HR+/HER2-) metastatic breast cancer (mBC) who initiated first-line palbociclib-fulvestrant.
Patients & Methods: Retrospective observational study of iKnowMed electronic health records among patients who initiated first-line palbociclib-fulvestrant between 1 February 2016 and 31 December 2019 and were followed through 30 June 2020. Demographic, clinical, and treatment characteristics were evaluated descriptively.
Anticancer Drugs
January 2025
Department of Breast Surgery, the First People's Hospital of Lianyungang, The Affiliated Hospital of XuZhou Medical University, Lianyungang, Jiangsu Province, China.
This study aimed to evaluate the efficacy of pyrotinib, an orally administered small molecule tyrosine kinase inhibitor, combined with neoadjuvant chemotherapy in treating patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer. Pyrotinib works by inhibiting the HER2 signaling pathway, thereby preventing tumor cell growth. This single-arm clinical trial aimed to assess the total pathological complete response (tpCR; ypT0/is and ypN0) rate as the primary endpoint.
View Article and Find Full Text PDFJ Transl Med
January 2025
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, No.651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.
Background: HER2-targeted antibody-drug conjugates (ADCs) have revolutionized the treatment landscape of metastatic breast cancer. However, the efficacy of these therapies may be compromised by genomic alterations. Hence, this study aims to identify factors predicting sensitivity to HER2 ADC in metastatic breast cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!