Competing endogenous RNA regulation in hematologic malignancies.

Clin Chim Acta

Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China. Electronic address:

Published: October 2020

The clinical application of cytogenetic analysis and molecular-targeted drugs has dramatically improved the prognosis for many patients with hematologic malignancy, especially for those with chronic myeloid leukemia (CML) and acute promyelocytic leukemia (APL). Nevertheless, the treatment of hematologic malignancies is still faced with problems, such as disease recurrence and drug resistance, so further exploring the underlying molecular mechanism is urgent. With the discovery of different RNA species, the mechanism of RNA-RNA interaction has caught more and more attention. "Competing endogenous RNA (ceRNA) hypothesis" is one of the fascinating products of recent researches. CeRNAs are endogenous RNA transcripts that share mutual microRNA response elements (MREs) and regulate expression of each other by competing for the same microRNAs pools. The hypothesis links different RNA species together and enriches our understanding of the human genome. Here, we introduce the hypothesis critically, summary the research progress in the field of hematologic malignancies and the current investigation methods, and address its promising clinical value in offering new predictive, prognostic biomarkers and therapeutic targets.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cca.2020.05.045DOI Listing

Publication Analysis

Top Keywords

endogenous rna
12
hematologic malignancies
12
rna species
8
rna
5
competing endogenous
4
rna regulation
4
hematologic
4
regulation hematologic
4
malignancies clinical
4
clinical application
4

Similar Publications

The scarecrow (scro) gene encodes a fly homolog of mammalian Nkx2.1 which is vital for early fly development as well as for optic lobe development. Previously, scro was reported to produce a circular RNA (circRNA) in addition to traditional mRNAs.

View Article and Find Full Text PDF

Construction of a novel gene signature linked to ferroptosis in pediatric sepsis.

Front Cell Dev Biol

February 2025

Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.

Introduction: Pediatric sepsis is a complex and life-threatening condition characterized by organ failure due to an uncontrolled immune response to infection. Recent studies suggest that ferroptosis, a newly identified form of programmed cell death, may play a role in sepsis progression. However, the specific mechanisms of ferroptosis in pediatric sepsis remain unclear.

View Article and Find Full Text PDF

Background: Gastric cancer (GC) is a highly heterogeneous tumour with high morbidity. Approximately 95% of GC cases are gastric adenocarcinomas, which are further categorized into two predominant subtypes: diffuse gastric cancer (DGC) and intestinal gastric cancer (IGC). These subtypes exhibit distinct pathophysiological and molecular characteristics, reflecting their unique tumorigenic mechanisms.

View Article and Find Full Text PDF

Purpose: Fungal keratitis (FK) is a challenging and sight-threatening corneal disease caused by fungal infections. Although long noncoding RNAs (lncRNAs) have been explored in various infectious diseases, their specific roles in FK remain largely unexplored.

Methods: A mouse model of FK was created by infecting corneal stromal cells with Fusarium solani.

View Article and Find Full Text PDF

CIZ1 is part of the RNA-dependent supramolecular assemblies that form around the inactive X-chromosome (Xi) in female cells and smaller assemblies throughout the nucleus in both sexes. Here, we show that CIZ1 C-terminal anchor domain (AD) is elevated in human breast tumor transcriptomes, even at stage I. Elevation correlates with deprotection of chromatin and upregulation of lncRNA-containing gene clusters in ∼10 Mb regions enriched in cancer-associated genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!