A biomarker of doping indicates the biological response to the use of a prohibited substance or method. Uncovering novel biomarkers of doping is a key objective in order to improve antidoping outcomes such as the detection of doping and changing athlete behavior toward doping practices. While the antidoping field has been successful in validating novel metabolites of prohibited substances, there has been less success in developing new biomarkers of doping. Employing the most suitable study designs and analytical approaches is critical to successfully uncovering novel biomarkers of doping with a high potential for translation into routine analysis. Here we argue that the antidoping field is well positioned for biomarker discovery and outline considerations for the development of novel biomarkers of doping.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4155/bio-2020-0035 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
Alkaline phosphatase (ALP) is a biomarker for many diseases, and monitoring its activity level is important for disease diagnosis and treatment. In this study, we used the microdroplet technology combined with an laser-induced polymerization method to prepare the Ag nanoparticle (AgNP) doped hydrogel microbeads (HMBs) with adjustable pore sizes that allow small molecules to enter while blocking large molecules. The AgNPs embedded in the hydrogel microspheres can provide SERS activity, improving the SERS signal of small molecules that diffuse to the AgNPs.
View Article and Find Full Text PDFNano Lett
January 2025
School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China.
Wearable sweat sensors offering real-time monitoring of biomarker levels suffer from stability and accuracy issues, primarily due to low biomarker concentrations, fluctuating sweat pH, and material detachment from sensor deformation. Here, we developed a wearable sensing system integrated with two advanced electrodes and a flexible microchannel for long-term reliable monitoring of sweat pH and uric acid (UA). By printing the ink doped with nanomaterials (CoO@CuCoO and polyaniline), we achieved highly stable electrodes for the direct analysis of perspiration, without additional surface modification.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.
A Cr-doped VO nanobelt (Cr/VO) with remarkable peroxidase-like activity was synthesized and coupled with uricase to catalyze the cascade reaction for detection of uric acid. Notably, the affinity of Cr/VO for 3,3',5,5'-tetramethylbenzidine dihydrochloride hydrate (TMB) and hydrogen peroxide (HO) is tenfold and 20-fold higher, respectively, than that of horseradish peroxidase (HRP). The Cr/VO exhibits highly reactive and stable peroxidase activity at temperatures of 20-60 ℃.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395 007, India.
A fluorescence "turn-off-on" nanoprobe is designed by using europium-doped strontium molybdate perovskite quantum dots (Eu:SMO PQDs) for the sequential detection of hypoxanthine (Hx) and Fe. The Eu:SMO PQDs were prepared by the sol-gel method using Sr(NO), (NH)MoO.4HO, and Eu(OCOCH) as precursors.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China. Electronic address:
The detection of biomarkers is crucial for assessing disease status and progression. Uric acid (UA), a common biomarker in body fluids, plays an important role in the diagnosis and monitoring of conditions such as hyperuricemia, chronic kidney disease, and cardiovascular disease. However, the low concentration of UA in non-invasive body fluids, combined with numerous interfering substances, makes its detection challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!