Biomarkers of doping: uses, discovery and validation.

Bioanalysis

World Anti-Doping Agency, 800 Rue du Square-Victoria Suite 1700, Montreal, QC H4Z 1B7, Canada.

Published: June 2020

A biomarker of doping indicates the biological response to the use of a prohibited substance or method. Uncovering novel biomarkers of doping is a key objective in order to improve antidoping outcomes such as the detection of doping and changing athlete behavior toward doping practices. While the antidoping field has been successful in validating novel metabolites of prohibited substances, there has been less success in developing new biomarkers of doping. Employing the most suitable study designs and analytical approaches is critical to successfully uncovering novel biomarkers of doping with a high potential for translation into routine analysis. Here we argue that the antidoping field is well positioned for biomarker discovery and outline considerations for the development of novel biomarkers of doping.

Download full-text PDF

Source
http://dx.doi.org/10.4155/bio-2020-0035DOI Listing

Publication Analysis

Top Keywords

biomarkers doping
20
novel biomarkers
12
uncovering novel
8
antidoping field
8
doping
7
biomarkers
5
doping discovery
4
discovery validation
4
validation biomarker
4
biomarker doping
4

Similar Publications

Three-Dimensional SERS-Active Hydrogel Microbeads Enable Highly Sensitive Homogeneous Phase Detection of Alkaline Phosphatase in Biosystems.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.

Alkaline phosphatase (ALP) is a biomarker for many diseases, and monitoring its activity level is important for disease diagnosis and treatment. In this study, we used the microdroplet technology combined with an laser-induced polymerization method to prepare the Ag nanoparticle (AgNP) doped hydrogel microbeads (HMBs) with adjustable pore sizes that allow small molecules to enter while blocking large molecules. The AgNPs embedded in the hydrogel microspheres can provide SERS activity, improving the SERS signal of small molecules that diffuse to the AgNPs.

View Article and Find Full Text PDF

Wearable sweat sensors offering real-time monitoring of biomarker levels suffer from stability and accuracy issues, primarily due to low biomarker concentrations, fluctuating sweat pH, and material detachment from sensor deformation. Here, we developed a wearable sensing system integrated with two advanced electrodes and a flexible microchannel for long-term reliable monitoring of sweat pH and uric acid (UA). By printing the ink doped with nanomaterials (CoO@CuCoO and polyaniline), we achieved highly stable electrodes for the direct analysis of perspiration, without additional surface modification.

View Article and Find Full Text PDF

Enzyme cascade nanozyme based colorimetric sensor for detection of uric acid as a biomarker of hyperuricemia.

Mikrochim Acta

January 2025

Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.

A Cr-doped VO nanobelt (Cr/VO) with remarkable peroxidase-like activity was synthesized and coupled with uricase to catalyze the cascade reaction for  detection of uric acid. Notably, the affinity of Cr/VO for 3,3',5,5'-tetramethylbenzidine dihydrochloride hydrate (TMB) and hydrogen peroxide (HO) is tenfold and 20-fold higher, respectively, than that of horseradish peroxidase (HRP). The Cr/VO exhibits highly reactive and stable peroxidase activity at temperatures of 20-60 ℃.

View Article and Find Full Text PDF

A fluorescence "turn-off-on" nanoprobe is designed by using europium-doped strontium molybdate perovskite quantum dots (Eu:SMO PQDs) for the sequential detection of hypoxanthine (Hx) and Fe. The Eu:SMO PQDs were prepared by the sol-gel method using Sr(NO), (NH)MoO.4HO, and Eu(OCOCH) as precursors.

View Article and Find Full Text PDF

Wood membrane: A sustainable electrochemical platform for enzyme-free and pretreatment-free monitoring uric acid in bodily fluids.

Anal Chim Acta

January 2025

School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China. Electronic address:

The detection of biomarkers is crucial for assessing disease status and progression. Uric acid (UA), a common biomarker in body fluids, plays an important role in the diagnosis and monitoring of conditions such as hyperuricemia, chronic kidney disease, and cardiovascular disease. However, the low concentration of UA in non-invasive body fluids, combined with numerous interfering substances, makes its detection challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!