The chromophores responsible for light absorption in atmospheric brown carbon (BrC) are not well characterized, which hinders our understanding of BrC chemistry, the links with optical properties, and accurate model representations of BrC to global climate and atmospheric oxidative capacity. In this study, the light absorption properties and chromophore composition of three BrC fractions of different polarities were characterized for urban aerosol collected in Xi'an and Beijing in winter 2013-2014. These three BrC fractions show large differences in light absorption and chromophore composition, but the chromophores responsible for light absorption are similar in Xi'an and Beijing. Water-insoluble BrC (WI-BrC) fraction dominates the total BrC absorption at 365 nm in both Xi'an (51 ± 5%) and Beijing (62 ± 13%), followed by a humic-like fraction (HULIS-BrC) and high-polarity water-soluble BrC. The major chromophores identified in HULIS-BrC are nitrophenols and carbonyl oxygenated polycyclic aromatic hydrocarbons (OPAHs) with 2-3 aromatic rings (in total 18 species), accounting for 10% and 14% of the light absorption of HULIS-BrC at 365 nm in Xi'an and Beijing, respectively. In comparison, the major chromophores identified in WI-BrC are PAHs and OPAHs with 4-6 aromatic rings (in total 16 species), contributing 6% and 8% of the light absorption of WI-BrC at 365 nm in Xi'an and Beijing, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.0c01149DOI Listing

Publication Analysis

Top Keywords

light absorption
24
xi'an beijing
20
365 xi'an
12
brown carbon
8
urban aerosol
8
optical properties
8
chromophores responsible
8
responsible light
8
brc
8
chromophore composition
8

Similar Publications

Photodynamic therapy (PDT) and photothermal therapy (PTT) have emerged as promising treatment options, showcasing immense potential in addressing both oncologic and nononcologic diseases. Single-component organic phototherapeutic agents (SCOPAs) offer advantages compared to inorganic or multicomponent nanomedicine, including better biosafety, lower toxicity, simpler synthesis, and enhanced reproducibility. Nonetheless, how to further improve the therapeutic effectiveness of SCOPAs remains a challenging research area.

View Article and Find Full Text PDF

Magnonics, which harnesses the unique properties of spin waves, offers promising advancements in data processing due to its broad frequency range, nonlinear dynamics, and scalability for on-chip integration. Effective information encoding in magnonic systems requires precise spatial and temporal control of spin waves. Here, we demonstrate the rapid optical control of spin-wave transport in hybrid magnonic-plasmonic structures.

View Article and Find Full Text PDF

On-Chip Metamaterial-Enhanced Mid-Infrared Photodetectors with Built-In Encryption Features.

Adv Sci (Weinh)

January 2025

College of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1, Sub-Lane Xiangshan, Xihu District, Hangzhou, 310024, China.

The integration of mid-infrared (MIR) photodetectors with built-in encryption capabilities holds immense promise for advancing secure communications in decentralized networks and compact sensing systems. However, achieving high sensitivity, self-powered operation, and reliable performance at room temperature within a miniaturized form factor remains a formidable challenge, largely due to constraints in MIR light absorption and the intricacies of embedding encryption at the device level. Here, a novel on-chip metamaterial-enhanced, 2D tantalum nickel selenide (Ta₂NiSe₅)-based photodetector, meticulously designed with a custom-engineered plasmonic resonance microstructure to achieve self-powered photodetection in the nanoampere range is unveiled.

View Article and Find Full Text PDF

In this study, nitrogen-doped carbon nanodots (N-CDs) with temperature and fluorescence sensing were prepared via hydrothermal method using L-lysine and ethylenediamine as precursors. The synthesized N-CDs exhibited spherical morphology with sizes ranging from 2.8 to 5.

View Article and Find Full Text PDF

Semitransparent perovskite solar cells (ST-PSCs) for building-integrated photovoltaics (BIPV) face the challenge of achieving high efficiency due to significant light loss. The SnO2 electron transport layer (ETL), utilized in n-i-p PSCs and prepared via the sol-gel method, is susceptible to aggregation on substrate, resulting in light scattering that diminishes absorption of the perovskite layer. In this study, we propose a strategy that combines atomic layer deposition (ALD) and sol-gel solution to deposit a bilayer SnO2 structure to address these issues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!