We study the pathogenesis of Francisella tularensis infection with an experimental mouse model, agent-based computation and mathematical analysis. Following inhalational exposure to Francisella tularensis SCHU S4, a small initial number of bacteria enter lung host cells and proliferate inside them, eventually destroying the host cell and releasing numerous copies that infect other cells. Our analysis of disease progression is based on a stochastic model of a population of infectious agents inside one host cell, extending the birth-and-death process by the occurrence of catastrophes: cell rupture events that affect all bacteria in a cell simultaneously. Closed expressions are obtained for the survival function of an infected cell, the number of bacteria released as a function of time after infection, and the total bacterial load. We compare our mathematical analysis with the results of agent-based computation and, making use of approximate Bayesian statistical inference, with experimental measurements carried out after murine aerosol infection with the virulent SCHU S4 strain of the bacterium Francisella tularensis, that infects alveolar macrophages. The posterior distribution of the rate of replication of intracellular bacteria is consistent with the estimate that the time between rounds of bacterial division is less than 6 hours in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304631PMC
http://dx.doi.org/10.1371/journal.pcbi.1007752DOI Listing

Publication Analysis

Top Keywords

francisella tularensis
16
tularensis infection
8
agent-based computation
8
mathematical analysis
8
number bacteria
8
host cell
8
cell
5
stochastic dynamics
4
francisella
4
dynamics francisella
4

Similar Publications

Introduction: In winter 2021/2022, a wolf population in the primeval Białowieża Forest in Poland was struck by an outbreak of severe mange caused by mixed infestations of and mites. We present an epidemiological analysis of this mange which caused significant morbidity and mortality.

Material And Methods: Ten sites known for wolf activity were monitored by camera trapping.

View Article and Find Full Text PDF

Breaking the cellular defense: the role of autophagy evasion in virulence.

Front Cell Infect Microbiol

January 2025

Department of Molecular Pathology and Biology, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czechia.

Many pathogens have evolved sophisticated strategies to evade autophagy, a crucial cellular defense mechanism that typically targets and degrades invading microorganisms. By subverting or inhibiting autophagy, these pathogens can create a more favorable environment for their replication and survival within the host. For instance, some bacteria secrete factors that block autophagosome formation, while others might escape from autophagosomes before degradation.

View Article and Find Full Text PDF

The COVID-19 and mpox crisis has reminded the world of the potentially catastrophic consequences of biological agents. Aside from the natural risk, biological agents can also be weaponized or used for bioterrorism. Dissemination in a population or among livestock could be used to destabilize a nation by creating a climate of terror, by negatively impacting the economy and undermining institutions.

View Article and Find Full Text PDF

Effects of Body Condition and Ectoparasitism on Host-Pathogen Interactions of Heteromyid Rodents.

Pathogens

December 2024

Departamento de Ciencias Veterinarias, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente y Estocolmo s/n Colonia Progresista AP 1729-D Cd. Juárez, Chihuahua CP 32310, Mexico.

Rodents play a significant role in the transmission of zoonotic diseases; anthropization has increased human contact with these animals, vectors of infectious agents. However, the processes driving parasitism of hosts remains poorly understood. , spp.

View Article and Find Full Text PDF

Tularemia is a rare nationally notifiable zoonosis, caused by the tier-1 select agent Francisella tularensis, that has been reported from all U.S. states except Hawaii.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!