The resolution enhancement over the extended depth of field (DOF) in the volumetric two-photon microscopy (TPM) is demonstrated by utilizing multiple orders of Bessel beams. Here the conventional method of switching laser modes (SLAM) in 2D is introduced to 3D, denoted as the volumetric SLAM (V-SLAM). The equivalent scanning beam in the TPM is a thin needle-like beam, which is generated from the subtraction between the needle-like 0th-order and the straw-like 1st-order Bessel beams. Compared with the 0th-order Bessel beam, the lateral resolution of the V-SLAM is increased by 28.6% and maintains over the axial depth of 56 µm. The V-SLAM performance is evaluated by employing fluorescent beads and a mouse brain slice. The V-SLAM approach provides a promising solution to improve the lateral resolutions for fast volumetric imaging on sparsely distributed samples.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.394282DOI Listing

Publication Analysis

Top Keywords

resolution enhancement
8
enhancement extended
8
extended depth
8
depth field
8
volumetric two-photon
8
two-photon microscopy
8
bessel beams
8
volumetric
4
field volumetric
4
microscopy resolution
4

Similar Publications

The tertiary structure of normal podocytes prevents protein from leaking into the urine. However, observing the complexity of podocytes is challenging because of the scale differences in their three-dimensional structure and the close proximity between neighboring cells in space. In this study, we explored podocyte-secreted angiopoietin-like 4 (ANGPTL4) as a potential morphological marker via super-resolution microscopy (SRM).

View Article and Find Full Text PDF

The cascade of events leading to tumor formation includes induction of a tumor supporting neovasculature, as a primary hallmark of cancer. Developing vasculature is difficult to evaluate but can be captured using microfluidic chip technology and patient derived cells. Herein, we established an approach to investigate the mechanisms promoting tumor vascularization and vascular targeted therapies via co-culture of cancer spheroids and endothelial cells in a three dimensional environment.

View Article and Find Full Text PDF

Optical coherence tomography (OCT) and confocal microscopy are pivotal in retinal imaging, offering distinct advantages and limitations. OCT offers rapid, noninvasive imaging but can suffer from clarity issues and motion artifacts, while confocal microscopy, providing high-resolution, cellular-detailed color images, is invasive and raises ethical concerns. To bridge the benefits of both modalities, we propose a novel framework based on unsupervised 3D CycleGAN for translating unpaired OCT to confocal microscopy images.

View Article and Find Full Text PDF

This study introduces an innovative approach to high-resolution latent fingerprint detection using carbon quantum dots (CQDs) biosynthesized from spent coffee grounds, enhanced with nitrogen doping. Conventional fingerprinting methods frequently use hazardous chemicals and are costly, highlighting the need for eco-friendly, affordable alternatives that preserve detection quality. The biosynthesized nitrogen-doped CQDs exhibit strong photoluminescence and high stability, offering a sustainable, effective alternative for fingerprint imaging.

View Article and Find Full Text PDF

Contamination of water resources by artificial coloring agents and the increasing incidence of bacterial illnesses are two significant environmental and public health issues that are getting worse day by day. Traditional treatment techniques frequently fail to address these problems adequately in a sustainable and environmental friendly way. In response, our study presents a novel photocatalyst that demonstrates superior photodegradation capability and antibacterial qualities in catering the above issues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!