Objective: Brain tissue oxygen (partial oxygen pressure [pO ]) levels are tightly regulated to stay within the normoxic zone, with deviations on either side resulting in impaired brain function. Whereas pathological events such as ischemic attacks and brief seizures have previously been shown to result in pO levels well below the normoxic zone, oxygen levels during prolonged status epilepticus (SE) and the subsequent endogenous kindling period are unknown.
Methods: We utilized two models of acquired temporal lobe epilepsy in rats: intrahippocampal kainic acid infusion and prolonged perforant pathway stimulation. Local tissue oxygen was measured in the dorsal hippocampus using an optode during and for several weeks following SE.
Results: We observed hyperoxia in the hippocampus during induced SE in both models. Following termination of SE, 88% of rats initiated focal self-generated spiking activity in the hippocampus within the first 7 days, which was associated with dynamic oxygen changes. Self-generated and recurring epileptiform activity subsequently organized into higher-frequency bursts that became progressively longer and were ultimately associated with behavioral seizures that became more severe with time and led to postictal hypoxia.
Significance: Induced SE and self-generated recurrent epileptiform activity can have profound and opposing effects on brain tissue oxygenation that may serve as a biomarker for ongoing pathological activity in the brain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7496277 | PMC |
http://dx.doi.org/10.1111/epi.16554 | DOI Listing |
Sci Adv
January 2025
School of GeoSciences, University of Edinburgh, James Hutton Road, Edinburgh EH9 3FE, UK.
Whether metazoan diversification during the Cambrian Radiation was driven by increased marine oxygenation remains highly debated. Repeated global oceanic oxygenation events have been inferred during this interval, but the degree of shallow marine oxygenation and its relationship to biodiversification and clade appearance remain uncertain. To resolve this, we interrogate an interval from ~527 to 519 Ma, encompassing multiple proposed global oceanic oxygenation events.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Max Planck-EPFL Laboratory for Molecular Nanoscience, Institut de Physique de la Matière Condensée, École Polytechnique Fédérale de Lausanne, CH 1015 Lausanne, Switzerland, 1005, Lausanne, SWITZERLAND.
Efficient catalytic water splitting demands advanced catalysts to improve the slow kinetics of the oxygen evolution reaction (OER). Earth-abundant transition metal oxides show promising OER activity in alkaline media. However, most experimental information available is either from post-mortem studies or in-situ space-averaged X-ray techniques in the micrometer range.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea.
The combination of molybdenum disulfide (MoS) with plasmonic nanomaterials has opened up new possibilities in biological applications by combining MoS's biocompatibility and high surface area with the optical sensitivity of plasmonic metals. These MoS-plasmonic hybrid systems hold great promise in areas such as biosensing, bioimaging, and phototherapy, where their complementary properties facilitate improved detection, real-time visualization, and targeted therapeutic interventions. MoS's adjustable optical features, combined with the plasmon resonance of noble metals such as gold and silver, enhance signal amplification, enabling detailed imaging and selective photothermal or photodynamic therapies while minimizing effects on healthy tissue.
View Article and Find Full Text PDFCurr Issues Mol Biol
January 2025
School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
Mitochondrial homeostasis is crucial for maintaining cellular energy production and preventing oxidative stress, which is essential for overall cellular function and longevity. Mitochondrial damage and dysfunction often occur concomitantly in myocardial ischemia-reperfusion injury (MIRI). Notoginsenoside R1 (NGR1), a unique saponin from the traditional Chinese medicine Panax notoginseng, has been shown to alleviate MIRI in previous studies, though its precise mechanism remains unclear.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
Grupo de Sistema Cardiovascular, Instituto de Ingeniería Biomédica (IIBM), Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires C1063, Argentina.
Myocardial ischaemia is a decompensation of the oxygen supply and demand ratio, often caused by coronary atherosclerosis. During the initial stage of ischaemia, the electrical activity of the heart is disrupted, increasing the risk of malignant arrhythmias. The aim of this study is to understand the differential behaviour of the ECG during occlusion of both the left anterior descending (LAD) and right anterior coronary artery (RCA), respectively, using spatio-temporal quantifiers from information theory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!