Covalent grafting of poly(p-phenylenediamine) (PPD)-phosphomolybdic acid (PMo) on rGO (PPD-PMo@rGO) has been realized within 1 minute. PPD-PMo@rGO shows a characteristic covalently linked dual network structure that can significantly enhance its specific capacitance and cycling stability for supercapacitor applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cc02464cDOI Listing

Publication Analysis

Top Keywords

covalently linked
8
linked dual
8
dual network
8
network structure
8
structure achieved
4
achieved rapid
4
rapid grafting
4
grafting polyp-phenylenediamine-phosphomolybdic
4
polyp-phenylenediamine-phosphomolybdic acid
4
acid reduced
4

Similar Publications

Targeting aldehyde dehydrogenase ALDH3A1 increases ferroptosis vulnerability in squamous cancer.

Oncogene

January 2025

Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.

Ferroptosis is a unique modality of regulated cell death induced by excessive lipid peroxidation, playing a crucial role in tumor suppression and providing potential therapeutic strategy for cancer treatment. Here, we find that aldehyde dehydrogenase-ALDH3A1 tightly links to ferroptosis in squamous cell carcinomas (SCCs). Functional assays demonstrate the enzymatic activity-dependent regulation of ALDH3A1 in protecting SCC cells against ferroptosis through catalyzing aldehydes and mitigating lipid peroxidation.

View Article and Find Full Text PDF

The study aimed to compare the effects of different types of excimer laser keratectomy on rabbit corneas and to identify the optimal disease model for corneal ectasia. Additionally, investigating the structural and molecular alterations in the novel disease model helped explore the mechanisms underlying biomechanical cues in corneal ectasia. 2.

View Article and Find Full Text PDF

Background: The use of the bone-seeking properties of bisphosphonates (BPs) to target the delivery of therapeutic drugs is a promising approach for the treatment of bone metastases. Currently, the most advanced example of this approach is a gemcitabine-ibandronate conjugate (GEM-IB), where the bone-targeting BP ibandronate (IB) is covalently linked to the antineoplastic agent gemcitabine (GEM) via a spacer phosphate group. In the present study, we describe the development of a new analytical platform to evaluate the metabolism and pharmacokinetics of GEM-IB in mice and dogs and the results of proof-of-concept studies assessing the pharmacokinetics of GEM-IB in dogs and mice.

View Article and Find Full Text PDF

Various Options for Covalent Immobilization of Cysteine Proteases-Ficin, Papain, Bromelain.

Int J Mol Sci

January 2025

Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia.

This study explores various methods for the covalent immobilization of cysteine proteases (ficin, papain, and bromelain). Covalent immobilization involves the formation of covalent bonds between the enzyme and a carrier or between enzyme molecules themselves without a carrier using a crosslinking agent. This process enhances the stability of the enzyme and allows for the creation of preparations with specific and controlled properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!