Capability of exciplex energy transfer through a spacer was investigated using three exciplex-forming solid mixtures which contained the well-known electron accepting 2,4,6-tris[3-(diphenylphosphinyl)phenyl]-1,3,5-triazine and appropriately designed bipolar cyanocarbazolyl-based derivatives functionalized by attachment of carbazolyl, acridanyl or phenyl units. These novel cyanocarbazolyl-based derivatives were used as both the spacer and exciplex-forming donor. Efficient organic light-emitting diodes with electroluminescence in cyan-yellow region and maximum external quantum efficiency of up to 7.7% were fabricated owing to efficient thermally activated fluorescence (TADF) of the newly discovered exciplexes. An approach of exciton separation by the spacer between the studied exciplexes and selected orange TADF emitter was proposed for the fabrication of white electroluminescent devices with prolonged lifetime comparing to that of single-color exciplex-based devices. Exciplex-forming systems were tested for exciton separation between inter- and intramolecular TADF. Exciplex energy transfer through a spacer was observed on relatively long distance for one system due to the energy resonance between triplet levels of the exciplex and spacer. First time observed here exciplex energy transfer through a spacer can be useful for both improvement of device stability and obtaining of white electroluminescence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7248288 | PMC |
http://dx.doi.org/10.1016/j.jare.2020.04.018 | DOI Listing |
J Phys Chem A
December 2024
Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States.
Decay processes of exciplexes of cyanoanthracenes with alkylbenzene donors were compared to those with alkoxybenzenes. For the three decay processes of exciplexes, the radiative rate constant () of alkoxy derivatives is slightly lower than those of alkylbenzenes at the same average exciplex energy. However, the corresponding deactivation rate constants, intersystem crossing () and nonradiative decay (), are considerably higher.
View Article and Find Full Text PDFJ Chem Phys
November 2024
College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China.
Organic materials typically do not phosphoresce at room temperature because both intersystem crossing (ISC) and phosphorescence back to the electronic ground state are slow, compared to the nonradiative decay processes. A group of organic guest-host molecules breaks this rule. Their phosphorescence at room temperature can last seconds with a quantum efficiency of over 10%.
View Article and Find Full Text PDFChem Sci
October 2024
Materials Research Centre, Indian Institute of Science Bangalore 560012 Karnataka India
Hyperfluorescence, also known as thermally activated delayed fluorescence (TADF) sensitized fluorescence, is known as a next-generation efficient and innovative process for high-performance organic light-emitting diodes (OLEDs). High external quantum efficiency (EQE) and good color purity are crucial parameters for display applications. Hyperfluorescent OLEDs (HF-OLEDs) take the lead in this respect as they utilize the advantages of both TADF emitters and fluorescent dopants, realizing high EQE with color saturation and long-term stability.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Department of Chemical Engineering, National Tsing-Hua University, Hsinchu 30013, Taiwan, Republic of China.
Thermally activated delayed fluorescence (TADF)-based electroluminescence (EL) devices adopting a host/guest strategy in their emitting layer (EML) are capable of realizing high efficiency. However, TADF emitters composed of donor and acceptor moieties as guests dispersed in organic host materials containing a donor and/or an acceptor are subject to donor-acceptor (D-A) interactions. In addition, electron delocalization between neighboring emitter molecules could form different species of aggregates.
View Article and Find Full Text PDFJ Fluoresc
September 2024
Doshi Vakil Arts College and G.C.U.B. Science and Commerce College, Goregaon-Raigad, Maharashtra, India.
A new category of 4-nitrophenol (4-NP) luminophores, infused with varying amounts of Pyrene (Py), was synthesized using the standard solid-state reaction method to investigate novel luminophores that emit at longer wavelengths. Their optical and electrochemical properties were analyzed using fluorimetry and cyclic voltammetry techniques. The fluorescence spectrum of Py-doped 4-NP displayed a broad fluorescence band with a peak at 599 nm for a Py concentration of 1 × 10 mol, indicating exciplex formation between 4-NP and Py in the excited state.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!