The genome structure of three ciprofloxacin-resistant clinical isolates was studied using next-generation sequencing on the Illumina platform. The protein sequences of the studied strains were found to have a high degree of homology. (M45, M57, MH1866) was shown to have limited biosynthetic capabilities, associated with the predominance of the genes encoding the proteins involved in catabolic processes. Multiple single-nucleotide substitutions causing intraspecific polymorphism of were found. The genes encoding the efflux systems - ABC transporters (the ATP-binding cassette superfamily) and proteins of the MATE (multidrug and toxic compound extrusion) family - were identified. The molecular mechanism of ciprofloxacin resistance of the M45 and M57 isolates was found to be associated with the Ser83Leu substitution in DNA gyrase subunit A. In the MH1866 isolate it was related to the Lys144Arg substitution in topoisomerase IV subunit A.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7245959 | PMC |
http://dx.doi.org/10.32607/actanaturae.10941 | DOI Listing |
NPJ Antimicrob Resist
January 2024
Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK.
During the genomic characterisation of Enterococcus faecium strains (n = 39) collected in a haematology ward, we identified an isolate (OI25), which contained vanA-type vancomycin resistance genes but was phenotypically susceptible to vancomycin. OI25 could revert to resistance when cultured in the presence of vancomycin and was thus considered to be vancomycin-variable. Long-read sequencing was used to identify structural variations within the vancomycin resistance region of OI25 and to uncover its resistance reversion mechanism.
View Article and Find Full Text PDFTransl Psychiatry
January 2025
Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA.
Brain anatomy plays a key role in complex behaviors and mental disorders that are sexually divergent. While our understanding of the sex differences in the brain anatomy remains relatively limited, particularly of the underlying genetic and molecular mechanisms that contribute to these differences. We performed the largest study of sex differences in brain volumes (N = 33,208) by examining sex differences both in the raw brain volumes and after controlling the whole brain volumes.
View Article and Find Full Text PDFSci Data
January 2025
Centre for Ecosystem Science, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
Antarctica, Earth's least understood and most remote continent, is threatened by human disturbances and climate-related changes, underscoring the imperative for biodiversity inventories to inform conservation. Antarctic ecosystems support unique species and genetic diversity, deliver essential ecosystem services and contribute to planetary stability. We present Antarctica's first comprehensive ecosystem classification and map of ice-free lands, which host most of the continent's biodiversity.
View Article and Find Full Text PDFNPJ Antimicrob Resist
April 2024
Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, MOR, Mexico.
Salmonella enterica serovar Typhimurium ST213 is an emergent multidrug-resistant sequence type associated with the food chain, and gastrointestinal and invasive infections in North America. Here, we applied genomic and phenotypic analyses to illustrate the diversity and evolution of sequence type ST213. The population structure and evolutionary history of ST213 strains, particularly the North American isolates (NA-ST213) distinguish them from other S.
View Article and Find Full Text PDFNature
January 2025
National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
The tetraploid genome and clonal propagation of the cultivated potato (Solanum tuberosum L.) dictate a slow, non-accumulative breeding mode of the most important tuber crop. Transitioning potato breeding to a seed-propagated hybrid system based on diploid inbred lines has the potential to greatly accelerate its improvement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!