Resting-state functional magnetic resonance imaging (rs-fMRI) data are 4-dimensional volumes (3-space + 1-time) that have been posited to reflect the underlying mechanisms of information exchange between brain regions, thus making it an attractive modality to develop diagnostic biomarkers of brain dysfunction. The enormous success of deep learning in computer vision has sparked recent interest in applying deep learning in neuroimaging. But the dimensionality of rs-fMRI data is too high (~20 M), making it difficult to meaningfully process the data in its raw form for deep learning experiments. It is currently not clear how the data should be engineered to optimally extract the time information, and whether combining different representations of time could provide better results. In this paper, we explored various transformations that retain the full spatial resolution by summarizing the temporal dimension of the rs-fMRI data, therefore making it possible to train a full three-dimensional convolutional neural network (3D-CNN) even on a moderately sized [~2,000 from Autism Brain Imaging Data Exchange (ABIDE)-I and II] data set. These transformations summarize the activity in each voxel of the rs-fMRI or that of the voxel and its neighbors to a single number. For each brain volume, we calculated regional homogeneity, the amplitude of low-frequency fluctuations, the fractional amplitude of low-frequency fluctuations, degree centrality, eigenvector centrality, local functional connectivity density, entropy, voxel-mirrored homotopic connectivity, and auto-correlation lag. We trained the 3D-CNN on a publically available autism dataset to classify the rs-fMRI images as being from individuals with autism spectrum disorder (ASD) or from healthy controls (CON) at an individual level. We attained results competitive on this task for a combined ABIDE-I and II datasets of ~66%. When all summary measures were combined the result was still only as good as that of the best single measure which was regional homogeneity (ReHo). In addition, we also applied the support vector machine (SVM) algorithm on the same dataset and achieved comparable results, suggesting that 3D-CNNs could not learn additional information from these temporal transformations that were more useful to differentiate ASD from CON.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242627 | PMC |
http://dx.doi.org/10.3389/fpsyt.2020.00440 | DOI Listing |
Health Sci Rep
January 2025
Department of Research The Medical Research Circle (MedReC) Goma Democratic Republic of the Congo.
Background And Aim: Epilepsy is a major neurological challenge, especially for pediatric populations. It profoundly impacts both developmental progress and quality of life in affected children. With the advent of artificial intelligence (AI), there's a growing interest in leveraging its capabilities to improve the diagnosis and management of pediatric epilepsy.
View Article and Find Full Text PDFJ Affect Disord
January 2025
The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China. Electronic address:
Childhood maltreatment represents a strong psychological stressor that may lead to the development of later psychopathology as well as a heightened risk of health and social problems. Despite a surge of interest in examining behavioral, neurocognitive, and brain connectivity profiles sculpted by such early adversity over the past decades, little is known about the neurobiological substrates underpinning childhood maltreatment. Here, we aim to detect the effects of childhood maltreatment on whole-brain resting-state functional connectivity (RSFC) in a cohort of healthy adults and to explore whether such RSFC profiles can be used to predict the severity of childhood trauma in subjects based on a data-driven connectome-based predictive modeling (CPM).
View Article and Find Full Text PDFNat Sci Sleep
January 2025
Department of Radiology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, People's Republic of China.
Background: COVID-19 has led to reports of fatigue and sleep problems. Brain function changes underlying sleep problems (SP) post-COVID-19 are unclear.
Purpose: This study investigated SP-related brain functional connectivity (FC) alterations.
Quant Imaging Med Surg
January 2025
Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
Background: There are currently no deep learning models applying resting-state functional magnetic resonance imaging (rs-fMRI) data to distinguish patients with Parkinson's disease (PD) and healthy controls (HCs). Moreover, no study has correlated objective gait parameters with brain network alterations in patients with PD. We propose BrainNetCNN + CL, applying a convolutional neural network (CNN) and joint contrastive learning (CL) method to brain network analysis to classify patients with PD and HCs, and compare their performance with classical classification methods.
View Article and Find Full Text PDFQuant Imaging Med Surg
January 2025
Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China.
Background: Approximately half of human immunodeficiency virus (HIV) patients experience HIV-associated neurocognitive disorders (HAND); however, the neurophysiological mechanisms underlying HAND remain unclear. This study aimed to evaluate changes in functional brain activity patterns during the early stages of HIV infection by comparing local and global indicators using resting-state functional magnetic resonance imaging (rs-fMRI).
Methods: A total of 165 people living with HIV (PLWH) but without neurocognitive disorders (PWND), 173 patients with asymptomatic neurocognitive impairment (ANI), and 100 matched healthy controls (HCs) were included in the study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!