A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Assessment of skin dose in breast cancer radiotherapy: on-phantom measurement and Monte Carlo simulation. | LitMetric

Aim: The main purpose of the present study is assessment of skin dose in breast cancer radiotherapy.

Background: Accurate assessment of skin dose in radiotherapy can provide useful information for clinical considerations.

Materials And Methods: A RANDO phantom was irradiated using a 6 MV Siemens Primus linac with medial and tangential radiotherapy fields for simulating breast cancer treatment. Dosimetry was also performed on various positions across the fields using an EBT3 radiochromic film. Similar conditions of measurement on the RANDO phantom including field size, irradiation angle, number of fields, etc. were subsequently simulated via the Monte Carlo N-Particle Transport code (MCNP). Ultimately, dose values for corresponding points from both methods were compared.

Results: Considering dosimetry using radiochromic films on the RANDO phantom, there were points having underdose and overdose based on the prescribed dose and skin tolerance levels. In this respect, 81.25% and 18.75% of the points had underdose and overdose, respectively. In some cases, several differences were observed between the measurement and the MCNP simulation results associated with skin dose.

Conclusion: Based on the results of the points which had underdose, it was suggested that a bolus should be used for the given points. With regard to overdose points, it was advocated to consider skin tolerance dose in treatment planning. Differences between the measurement and the MCNP simulation results might be due to voxel size of tally cells in simulations, effect of beam's angle of incidence, validation time of linac's head, lack of electronic equilibrium in the build-up region, as well as MCNP tally type.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7244887PMC
http://dx.doi.org/10.1016/j.rpor.2020.03.008DOI Listing

Publication Analysis

Top Keywords

assessment skin
12
skin dose
12
breast cancer
12
rando phantom
12
points underdose
12
dose breast
8
monte carlo
8
underdose overdose
8
skin tolerance
8
measurement mcnp
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!