Plasmonic Photocatalysts for Sunlight-Driven Reduction of CO : Details, Developments, and Perspectives.

ChemSusChem

Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, Québec, Québec, G1V 0A6, Canada.

Published: August 2020

Plasmonic photocatalysis is among the most efficient processes for the photoreduction of CO into valuable fuels. The formation of localized surface plasmon resonance (LSPR), energy transfer, and surface reaction are the significant steps in this process. LSPR plays an essential role in the performance of plasmonic photocatalysts as it promotes an excellent, light absorption over a broad wavelength range while simultaneously facilitating an efficient energy transfer to semiconductors. The LSPR transfers energy to a semiconductor through various mechanisms, which have both advantages and disadvantages. This work points out four critical features for plasmonic photocatalyst design, that is, plasmonic materials, size, shape of plasmonic nanoparticles (PNPs), and the contact between PNPs and semiconductor. Various developed plasmonic photocatalysts, as well as their photocatalytic performance in CO photoreduction, are reviewed and discussed. Finally, perspectives of advanced architectures and structural engineering for plasmonic photocatalyst design are put forward with high expectations to achieve an efficient CO photoreduction shortly.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202000905DOI Listing

Publication Analysis

Top Keywords

plasmonic photocatalysts
12
plasmonic
8
energy transfer
8
plasmonic photocatalyst
8
photocatalyst design
8
photocatalysts sunlight-driven
4
sunlight-driven reduction
4
reduction details
4
details developments
4
developments perspectives
4

Similar Publications

Designing and optimizing photocatalysts to maximize the use of sunlight and achieve fast charge transport remains a goal of photocatalysis technology. Herein, a full-spectrum-response BiOBr:Er@BiO core-shell S-scheme heterojunction is designed with [Bi─O] tetrahedral sharing using upconversion (UC) functionality, photothermal effects, and interfacial engineering. The UC function of Er and plasmon resonance effect of BiO greatly improves the utilization of sunlight.

View Article and Find Full Text PDF

Could Metamaterials be the Next Frontier of Catalysis?

Small

December 2024

Department of Electrical and Electronic Engineering, Engineering Building A, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.

Plasmonic catalysis, whereby either an optically resonating metal couples to a catalytic material or a catalytic metal particle achieves optical resonance, has been a mainstay of photo-catalysis research for the past few decades. However, a new field of metal-dielectric metamaterials, including plasmonic metamaterials, is emerging as the next frontier in catalysis research. With new optical behaviors that can be achieved by sub-wavelength structures, in either periodic or semi-periodic arrangements, metamaterials can overcome some of the limitations of conventional plasmonic catalysis.

View Article and Find Full Text PDF

Photocatalytic technology provides a new approach for the harmless treatment of low concentration NO in the atmosphere. The development of high-performance semiconductor materials to improve the light absorption efficiency and the separation efficiency of photogenerated carriers is the focus of the research. Bismuth oxybismuth sulfate (BiOSO) shows significant potential for photocatalytic NO purification due to its unique electronic and layered structure.

View Article and Find Full Text PDF

A photothermal MXene-derived heterojunction for boosted CO reduction and tunable CH selectivity.

J Colloid Interface Sci

December 2024

School of Environment, South China Normal University, Guangzhou 510006, China; MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou 510006, China. Electronic address:

We report here a BiWO/TiCT@Ag (BT@Ag) photothermal photocatalyst for efficient CO reduction with tunable CH selectivity. Incorporation of TiCT MXene creates well-defined heterointerfaces between BiWO and TiCT and converts thermal energy upon light illumination via photothermal effect, which contributes to a mitigation of the recombination of photo-induced charge carries for a high electron mobility. Density functional theory calculations substantiate that TiCT functions as the adsorption site and active center where the transferred electrons are effectively involved in CO reduction for enhanced CH selectivity.

View Article and Find Full Text PDF

Hydrogen is increasingly acknowledged as a viable alternative to traditional fossil fuels. However, the photothermal properties of CoFeS, a photocatalyst displaying metal-like behavior, have not been adequately explored in the context of photocatalytic H generation. To improve photocatalytic hydrogen evolution, it is crucial to understand how to expedite the transfer of photogenerated electrons and the dissociation of H-OH bonds for enhanced hydrogen ion release.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!