In bacteria small regulatory RNAs (sRNAs) interact with their mRNA targets through non-consecutive base-pairing. The loose base-pairing specificity allows sRNAs to regulate large numbers of genes, either affecting the stability and/or the translation of mRNAs. Mechanisms enabling post-transcriptional regulation of the sRNAs themselves have also been described involving so-called sponge RNAs. Sponge RNAs modulate free sRNA levels in the cell through RNA-RNA interactions that sequester ("soak up") the sRNA and/or promote degradation of the target sRNA or the sponge RNA-sRNA complex. The development of complex RNA sequencing strategies for the detection of RNA-RNA interactions has enabled identification of several sponge RNAs, as well as previously known regulatory RNAs able to act as both regulators and sponges. This review highlights techniques that have enabled the identification of these sponge RNAs, the origins of sponge RNAs and the mechanisms by which they function in the post-transcriptional network.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbagrm.2020.194565 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!