Development of alginate esters as novel multifunctional excipients for direct compression.

Carbohydr Polym

ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nimes, France.

Published: July 2020

Methyl ester derivatives of alginic acid have been evaluated as potential multifunctional excipients for pharmaceutical direct compression. The use of alginic acid as an excipient in tablet formulation is limited because of certain drawbacks such as low tablet hardness and poor compressibility. The objective of this work is to improve these properties through esterification of alginic acid, chemical modification commonly used for enhancing the functionality of tableting excipients. It has been observed that the degree of methylation (DM) has a profitable impact in the physico-chemical and mechanical properties of the obtained materials. In general, an increase in the degree of methylation yielded tablets with higher tensile strength and better compressibility. Furthermore, modified alginates exhibited extended disintegration times compared to native alginic acid due to the introduced hydrophobicity. Finally, the functional versatility of the modified alginates as disintegrating and filling/binding agents was tested by formulating them with microcrystalline cellulose and lactose.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2020.116280DOI Listing

Publication Analysis

Top Keywords

alginic acid
16
multifunctional excipients
8
direct compression
8
degree methylation
8
modified alginates
8
development alginate
4
alginate esters
4
esters novel
4
novel multifunctional
4
excipients direct
4

Similar Publications

Article Synopsis
  • Multifunctional nanoparticles derived from plants and mushrooms show potential for improved therapy and diagnostics in biomedicine.
  • The combination of silver and natural phytochemicals has been found to enhance antimicrobial and anticancer effects, particularly in conjunction with photodynamic therapy.
  • Gel formulations of these nanoparticles demonstrate greater effectiveness against cancer cells and adapt to tissue structures, indicating promising applications for targeted cancer treatment and tissue regeneration after surgeries.
View Article and Find Full Text PDF

Novel metal-organic framework hydrogel for enhanced selective removal of uranyl ions from nuclear wastewater.

Environ Res

November 2024

School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China. Electronic address:

The efficient removal of uranium (U(Ⅵ)) from nuclear wastewater presents a significant challenge due to the high concentrations of uranium and various interfering ions. In this study, we developed and used metal-organic framework hydrogel (MOFH) as a highly efficient adsorbent for uranium removal. The MOFH, synthesized with ferrocyanides and functional groups (Fe(Ⅱ)-CN-Fe(Ⅲ), OH, -COOH, and -NH), exhibited good chemical stability, large separation capacity, and high selectivity.

View Article and Find Full Text PDF

Alginate Formulation for Wound Healing Applications.

Adv Wound Care (New Rochelle)

November 2024

Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, St. Louis, Missouri, USA.

Alginate, sourced from seaweed, holds significant importance in industrial and biomedical domains due to its versatile properties. Its chemical composition, primarily comprising β-D-mannuronic acid and α-L-guluronic acid, governs its physical and biological attributes. This polysaccharide, extracted from brown algae and bacteria, offers diverse compositions impacting key factors such as molecular weight, flexibility, solubility, and stability.

View Article and Find Full Text PDF

In this paper, the adsorption of gatifloxacin (GAT) by three types of polystyrene nano-plastics (PSNPs), including 400 nm polystyrene (PS), amino-modified PS (PS-NH), and carboxyl-modified PS (PS-COOH) was studied and the adsorption mechanism were assessed. Experimental findings revealed that the equilibrium adsorption capacity of PSNPs to GAT followed the order PS-NH > PS-COOH > PS. The adsorption was regulated by both physical and chemical mechanisms, with intra-particle and external diffusion jointly controlling the adsorption rate.

View Article and Find Full Text PDF

Modeling conformational changes in alginic acid oligomers induced by external forces.

Carbohydr Res

November 2024

Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; Department of Biopharmacy, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland. Electronic address:

In this study, the mechanism and nature of mechanical force-induced conformational transitions of alginate oligomers with different ratios of β-d-mannuronic acid (M unit) and α-l-guluronic acid (G unit) units were investigated. The influence of the type of glycosidic linkage in either homo- or heterooligomers on the nature of conformational transitions was also considered. For this purpose, two different theoretical methods were used: quantum mechanics (QM) at the DFT level with the EGO (Enforced Geometry Optimization) approach previously tested also for other saccharide systems, and molecular dynamics (MD) simulations within hybrid interaction potentials, which take into account both the ab initio (QM) level of theory and classical molecular mechanics (MM) force fields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!