Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Neurodevelopmental impairment remains a significant morbidity in former very low birth weight premature infants. There is increasing evidence the microbiome affects neurodevelopment but mechanistic causes are largely unknown. There are many factors which affect the developing microbiome in infants including mode of delivery, feeding, medications, and environmental exposures. The overall impact of these factors may differ between premature and term infants. The microbiome and brain have well recognized bidirectional communication pathways via neural, hormonal, and immunologic mechanisms. Understanding the interplay between these different pathways has been possible with the use of animal models, particularly germ-free mice. The intricate relationship between the microbiome and the brain remains a research priority not only to improve the care, but to also improve the long-term neurodevelopmental outcomes in this vulnerable population.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.pmbts.2020.04.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!