This study was designed to determine effects of eggshell temperature (EST) pattern in week 2 and week 3 of incubation on tibia development of broiler chickens at slaughter age. A total of 468 Ross 308 eggs were incubated at an EST of 37.8°C from incubation day (E) 0 to E7. Thereafter, a 2 × 2 factorial arrangement with 2 EST (37.8°C and 38.9°C) from E8 to E14 and 2 EST (36.7°C and 37.8°C) from E15 till hatch was applied. After hatching, chickens were reared until slaughter age with the 4 EST treatments and 8 replicates per treatment. At day 41 and 42, one male chicken per replicate per day was selected, and hock burn and food pad dermatitis were scored. Rotated tibia, tibia dyschondroplasia, epiphyseal plate abnormalities, bacterial chondronecrosis with osteomyelitis, and epiphysiolysis were assessed. Tibia weight, length, thickness, head thickness, and robusticity index were determined. X-ray analyses (osseous volume, pore volume, total volume, volume fraction, mineral content, and mineral density) and a 3-point bending test (ultimate strength, yield strength, stiffness, energy to fracture, and elastic modulus) were performed. A high EST (38.9°C) in week 2 of incubation, followed by a normal EST (37.8°C) in week 3 resulted in higher mineral content (P = 0.001), mineral density (P = 0.002), ultimate strength (P = 0.04), yield strength (P = 0.03), and stiffness (P = 0.05) compared with the other 3 EST groups (week 2 × week 3 interaction). A high EST (38.9°C) in week 2 of incubation, regardless of the EST in week 3, resulted in a higher tibia weight (P < 0.001), thickness (P = 0.05), osseous volume (P < 0.001), and total volume (P < 0.001) than a normal EST (37.8°C). It can be concluded that 1.1°C higher EST than normal in week 2 of incubation appears to stimulate tibia morphological, biophysical, and mechanical characteristics of broiler chickens at slaughter age. Additionally, a 1.1°C lower EST in week 3 of incubation appears to have negative effects on tibia characteristics, particularly in interaction with the EST in week 2 of incubation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597550 | PMC |
http://dx.doi.org/10.1016/j.psj.2019.12.042 | DOI Listing |
Plant Dis
January 2025
Hainan University School of Tropical Agriculture and Forestry, Haikou, Hainan, China;
Katsumada galangal seed ( K. Schum) is an important member of the Zingiberaceae family, with both medicinal value and culinary applications (Park et al. 2020).
View Article and Find Full Text PDFPlant Dis
January 2025
Hebei Academy of Agricultural and Forestry Sciences, Plant Protection Institute, 437 Dongguan Street, Baoding, Hebei, China, 071000.
Strawberry () is an important economic crop in Hebei, China. In May 2023, root rot was observed in strawberry plantations (cultivar 'Benihoppe') in Shijiazhuang (37°57'23″N, 115°16'34″E), Hebei, China. The incidence of the disease reached up to 30% in the field.
View Article and Find Full Text PDFJ Fish Dis
January 2025
Cawthron Institute, Nelson, New Zealand.
Intracellular, free-floating and biofilm-forming bacterial pathogens have been implicated in summer mortality of farmed Chinook salmon, Oncorhynchus tshawytscha, in New Zealand. A mortality event in 2022 in the Pelorus Sound, Marlborough, was linked to high water temperatures (> 18°C), and bacterial skin disease associated with Piscirickettsia spp. (=Rickettsia-like organisms) and Tenacibaculum species.
View Article and Find Full Text PDFJ Vasc Interv Radiol
January 2025
Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine. 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Purpose: This research aimed to develop and assess a Lipiodol Pickering emulsion containing anti-Programmed cell Death Ligand 1 (PD-L1) antibodies through in vitro experiments.
Materials And Methods: The emulsion was created by combining Lipiodol with poly (lactic-co-glycolic acid) (PLGA) nanoparticles and anti-PD-L1 antibodies. Confocal laser microscopy was used to evaluate the encapsulation of the antibodies within the Pickering emulsion.
Sci Rep
January 2025
Department of Plant, Food, and Environmental Sciences, Dalhousie University, Truro, B2N 5E3, Nova Scotia, Canada.
Tea plantations commonly receive substantial quantities of nitrogen (N) fertilizer, with potential for considerable N loss to occur. This study assessed N retention in acidic tea plantation soil and examined how different biochar application rates and fertilizer combinations affect N dynamics, highlighting the importance of innovative technologies to monitor and enhance N supply management. This research adopted a modified 2-week aerobic incubation and ion-exchange membrane (IEM) techniques to evaluate the soil N supply in tea plantations following early-summer top-dressing as influenced by various biochar rates and fertilizer combinations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!