This study was designed to determine effects of eggshell temperature (EST) pattern in week 2 and week 3 of incubation on tibia development of broiler chickens at slaughter age. A total of 468 Ross 308 eggs were incubated at an EST of 37.8°C from incubation day (E) 0 to E7. Thereafter, a 2 × 2 factorial arrangement with 2 EST (37.8°C and 38.9°C) from E8 to E14 and 2 EST (36.7°C and 37.8°C) from E15 till hatch was applied. After hatching, chickens were reared until slaughter age with the 4 EST treatments and 8 replicates per treatment. At day 41 and 42, one male chicken per replicate per day was selected, and hock burn and food pad dermatitis were scored. Rotated tibia, tibia dyschondroplasia, epiphyseal plate abnormalities, bacterial chondronecrosis with osteomyelitis, and epiphysiolysis were assessed. Tibia weight, length, thickness, head thickness, and robusticity index were determined. X-ray analyses (osseous volume, pore volume, total volume, volume fraction, mineral content, and mineral density) and a 3-point bending test (ultimate strength, yield strength, stiffness, energy to fracture, and elastic modulus) were performed. A high EST (38.9°C) in week 2 of incubation, followed by a normal EST (37.8°C) in week 3 resulted in higher mineral content (P = 0.001), mineral density (P = 0.002), ultimate strength (P = 0.04), yield strength (P = 0.03), and stiffness (P = 0.05) compared with the other 3 EST groups (week 2 × week 3 interaction). A high EST (38.9°C) in week 2 of incubation, regardless of the EST in week 3, resulted in a higher tibia weight (P < 0.001), thickness (P = 0.05), osseous volume (P < 0.001), and total volume (P < 0.001) than a normal EST (37.8°C). It can be concluded that 1.1°C higher EST than normal in week 2 of incubation appears to stimulate tibia morphological, biophysical, and mechanical characteristics of broiler chickens at slaughter age. Additionally, a 1.1°C lower EST in week 3 of incubation appears to have negative effects on tibia characteristics, particularly in interaction with the EST in week 2 of incubation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597550PMC
http://dx.doi.org/10.1016/j.psj.2019.12.042DOI Listing

Publication Analysis

Top Keywords

week incubation
24
slaughter age
16
est 378°c
16
est
14
broiler chickens
12
chickens slaughter
12
est week
12
week
11
effects eggshell
8
eggshell temperature
8

Similar Publications

Katsumada galangal seed ( K. Schum) is an important member of the Zingiberaceae family, with both medicinal value and culinary applications (Park et al. 2020).

View Article and Find Full Text PDF

First report of strawberry root rot caused by in China.

Plant Dis

January 2025

Hebei Academy of Agricultural and Forestry Sciences, Plant Protection Institute, 437 Dongguan Street, Baoding, Hebei, China, 071000.

Strawberry () is an important economic crop in Hebei, China. In May 2023, root rot was observed in strawberry plantations (cultivar 'Benihoppe') in Shijiazhuang (37°57'23″N, 115°16'34″E), Hebei, China. The incidence of the disease reached up to 30% in the field.

View Article and Find Full Text PDF

Intracellular, free-floating and biofilm-forming bacterial pathogens have been implicated in summer mortality of farmed Chinook salmon, Oncorhynchus tshawytscha, in New Zealand. A mortality event in 2022 in the Pelorus Sound, Marlborough, was linked to high water temperatures (> 18°C), and bacterial skin disease associated with Piscirickettsia spp. (=Rickettsia-like organisms) and Tenacibaculum species.

View Article and Find Full Text PDF

Purpose: This research aimed to develop and assess a Lipiodol Pickering emulsion containing anti-Programmed cell Death Ligand 1 (PD-L1) antibodies through in vitro experiments.

Materials And Methods: The emulsion was created by combining Lipiodol with poly (lactic-co-glycolic acid) (PLGA) nanoparticles and anti-PD-L1 antibodies. Confocal laser microscopy was used to evaluate the encapsulation of the antibodies within the Pickering emulsion.

View Article and Find Full Text PDF

Tea plantations commonly receive substantial quantities of nitrogen (N) fertilizer, with potential for considerable N loss to occur. This study assessed N retention in acidic tea plantation soil and examined how different biochar application rates and fertilizer combinations affect N dynamics, highlighting the importance of innovative technologies to monitor and enhance N supply management. This research adopted a modified 2-week aerobic incubation and ion-exchange membrane (IEM) techniques to evaluate the soil N supply in tea plantations following early-summer top-dressing as influenced by various biochar rates and fertilizer combinations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!