Supercritical fluid chromatography is becoming more prevalent, particularly in industry. This is due to the inexpensive, and more importantly, environmentally benign carbon dioxide that is used as the major component of the mobile phase. Water is minimally miscible with carbon dioxide at temperatures and pressures commonly used in SFC. However, the introduction of a polar alcohol modifier component increases the solubility of water in carbon dioxide. Previously, the addition of small amounts of water in the mobile phase was shown to provide significant gains in efficiency in chiral supercritical fluid chromatography, especially with polar stationary phases. In this work, we report the effect of the addition of small amounts of water on efficiency and retention factor with four different SFC stationary phases used for achiral analysis namely FructoShell-N (native cyclofructan-6), SilicaShell (bare silica), PoroShell 120 EC C18 (octadecyl silica) and Xselect C18 SB. This is the first reported use of FructoShell-N, a cyclofructan derivatized phase for SFC applications. We devised a predictive test to determine which analytes show an increase in efficiency using their known chemical constants (logK, pK, PSA and H). We also use discriminant analysis to elucidate the most important analyte parameters that contribute to "water enhanced" efficiency gains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2020.04.065 | DOI Listing |
Chirality
January 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China.
Efficient enantioselective separation is a critical process in pharmaceutical and chemical industries for the production of chiral compounds. Herein, we developed a novel approach for the efficient enantioselective separation of primary amines using supercritical fluid chromatography (SFC) with a commercially available SFC column, Cel1. The key factors of separation, including cosolvent ratios, total cosolvent percentages, and temperature, were systematically assessed in this study.
View Article and Find Full Text PDFFoods
January 2025
Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran.
Lavender is one of the most appreciated aromatic plants, with high economic value in food, cosmetics, perfumery, and pharmaceutical industries. Lavender essential oil (LEO) is known to have demonstrative antimicrobial, antioxidant, therapeutic, flavor and fragrance properties. Conventional extraction methods, e.
View Article and Find Full Text PDFFoods
December 2024
Instituto de Ciencias de la Vid y del Vino (ICVV) (Universidad de La Rioja, Consejo Superior de Investigaciones Científicas (CSIC), Gobierno de La Rioja), 26007 Logroño, Spain.
The objectives of this study were to obtain and characterise polyphenolic extracts from red grape pomace of L. cv Graciano via conventional solvent extraction (SE) and green supercritical fluid extraction (SFE) and to evaluate their antibacterial activity against susceptible and multidrug-resistant strains of intestinal origin. The SE and SFE methods were optimised, and ultra-performance liquid chromatography/mass spectrometry (UPLC/QqQ-MS/MS) analysis revealed 38 phenolic compounds in the SE sample, with anthocyanins being the predominant polyphenols, and 21 phenolic compounds in the SFE samples, among which hydroxybenzoic acids and flavonols were the predominant compounds.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Laboratory of Organic Chemistry LR17ES08, Faculty of Sciences of Sfax, University of Sfax, B.P 1171, Sfax 3038, Tunisia.
Green chemistry focuses on reducing the environmental impacts of chemicals through sustainable practices. Traditional methods for extracting bioactive compounds from leaves, such as hydro-distillation and organic solvent extraction, have limitations, including long extraction times, high energy consumption, and potential toxic solvent residues. This study explored the use of supercritical fluid extraction (SFE), pressurized liquid extraction (PLE), and gas-expanded liquid (GXL) processes to improve efficiency and selectivity.
View Article and Find Full Text PDFMolecules
January 2025
Foodomics Laboratory, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain.
Propolis is a valuable natural resource for extracting various beneficial compounds. This study explores a sustainable extraction approach for Brazilian green propolis. First, supercritical fluid extraction (SFE) process parameters were optimized (co-solvent: 21.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!