Coordinated movements have been shown to enhance the speed or efficiency of swimming, flying, and pumping in many organisms. Coordinated pulsing has not been observed in many cnidarians (jellyfish, anemones, corals), as is the case for the xeniid corals considered in our corresponding paper. This observation opens the question as to whether xeniid corals, and cnidarians in general, do not coordinate their pulsing behavior for lack of a hydrodynamic advantage or for other reasons. For example, a diffuse nervous system with lack of substantial sensory input may not be capable of such coordination. Similarly, grouping may serve a defensive role rather than a fluid dynamic role. In this paper, the immersed boundary method is used to quantify the volumetric flux of fluid generated by an individual xeniid coral polyp in comparison with a pair of polyps. Both the distances between the polyps and the phase difference between each polyp are considered. More specifically, the fully coupled fluid-structure interaction problem of a coral polyp driving fluid flow is solved using a hybrid version of the immersed boundary method where the Navier-Stokes equations are solved using a finite differences and the elasticity equations describing the coral are solved using finite elements. We explore three possible hypotheses: (1) pulsing in pairs increases upward flow above the polyps and is thus beneficial, (2) these benefits vary with the polyps' pulsing phase difference, and (3) these benefits vary with the distance between the polyps. We find that there is no substantial hydrodynamic advantage to pulsing in a pair for any phase difference. The volumetric flux of fluid generated by each coral also decreases as the distance between polyps is decreased. This surprising result is consistent with measurements taken from another cnidarian with similar behavior, the upside down jellyfish, in which each medusa drives less flow when in a group.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11538-020-00741-y | DOI Listing |
bioRxiv
May 2024
Department of Marine Sciences, University of Puerto Rico at Mayagüez, PO Box 9000, Mayagüez, PR 00681, USA.
Zootaxa
January 2022
Department of Biology, Harvey Mudd College, Claremont, CA 91711, USA. .
The type of the xeniid soft coral Sansibia flava (May, 1898) is re-described for the first time and its morphological diagnosis is presented. A subsequent integrated analysis of molecular and morphological characters of related Xeniidae, including species indigenous to the Indo-Pacific Ocean and invasive in the Atlantic (Brazil), led to the description of a new Sansibia species, as well as two new genera comprising an additional three new species. All of these taxa are encrusting, with polyps arising directly from a spreading basal membrane.
View Article and Find Full Text PDFZootaxa
December 2021
Department of Biology, Harvey Mudd College, Claremont, CA 91711, USA. .
The oldest existing type material for any of the xeniid soft corals, Sympodium caeruleum Ehrenberg, 1834, is re-described. An integrated analysis of molecular and morphological characters of Indo-Pacific Xeniidae support the description of seven new species of that genus. The extent of interspecific morphological variation within the genus is extensive; colonies arise from an encrusting membrane of variable thickness that can be either mat-like or may have ribbon-like extensions or irregularly shaped low mounds.
View Article and Find Full Text PDFZootaxa
April 2021
School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978, Israel.
Because of the problematical identity and status of the type of the xeniid soft coral genus Cespitularia Milne-Edwards Haime, 1850, the species C. stolonifera Gohar, 1938 is revised. Examination of the type colonies has led to the establishment of the new genus Unomia gen.
View Article and Find Full Text PDFBull Math Biol
July 2020
Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, USA.
Xeniid corals (Cnidaria: Alcyonacea), a family of soft corals, include species displaying a characteristic pulsing behavior. This behavior has been shown to increase oxygen diffusion away from the coral tissue, resulting in higher photosynthetic rates from mutualistic symbionts. Maintaining such a pulsing behavior comes at a high energetic cost, and it has been proposed that coordinating the pulse of individual polyps within a colony might enhance the efficiency of fluid transport.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!