Cationic and anionic heavy metal contamination sometimes co-exists in soil systems, such as mining areas and shooting ranges, seriously threatens human health and ecological stability. In this study, iron-modified rice husk hydrochar showed commendable ability to immobilize both heavy metal cation (Pb) and anion (Sb) simultaneously in soils. Iron-modified rice husk hydrochar (HC12.5-180) (5%) amendment reduced the bioavailability (EX- and CB-fraction) of Pb and Sb by 25 and 40%, respectively, which were 8 and 5 times higher than that of pristine rice husk hydrochar (HC0-180) (5%) amendment. The cation (Pb) immobilization mainly depends on cation exchange with mineral components (K, Ca, Na, Mg), precipitation with nonmetallic anions (Cl- and SO), and complexation. Meanwhile, the iron oxides (FeO, FeO, FeO), formed during hydrothermal process, can be easily combined with anion (Sb) to form geochemically stable minerals. In conclusion, this work offered a practical and cost-effective technology based on the iron modification rice husk hydrochar for the immobilization of both anionic and cationic heavy metal contaminants in soils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2020.122977 | DOI Listing |
Sci Rep
January 2025
Department of Chemical Engineering, Bahir Dar Institute of Technology, Bahir Dar University, P.O. Box 26, Bahir Dar, Ethiopia.
This work aimed to extract silica from combination of rice husk (RH and Rice straw (RS) by optimizing the ash digesting process parameters with the aid of response surface methodology (RSM). The effects of three independent ash digestion process factors like sodium hydroxide concentration (1-3 M), temperature (60-120 °C) and time (1-3 h), for silica production from the mixture of rice husk (RH) and rice straw (RS) were studied. A quadratic model was used to correlate the interaction effects of the independent variables for maximum silica production at the optimum process parameters by employing central composite design (CCD) with RSM.
View Article and Find Full Text PDFSci Rep
January 2025
Zhalyn LLP, Almaty, 050000, Kazakhstan.
The increasing environmental issues and growing interest in utilizing natural resources have led to heightened attention towards renewable energy sources. This has spurred the exploration of sustainable approaches, including ecosystem restoration. The soil's ability to retain moisture increases with the rise in organic carbon content.
View Article and Find Full Text PDFACS Omega
December 2024
Laboratory of Liaoning Province for Clean Combustion Power Generation and Heating Supply Technology, Shenyang Institute of Engineering, Shenyang 110136, China.
There are many problems in the direct combustion of biomass, such as low combustion efficiency and easy slagging. In this paper, rice husk (RH) was taken as the research object, and the effects of different washing pretreatment conditions (washing time (WTI), washing temperature (WTE), and particle size) on the combustion characteristics and ash formation characteristics were discussed. The results show that the combustion characteristics of RH were significantly coupling-affected by the WTE and WTI, and the comprehensive characteristics of volatile release were significantly coupling-affected by the particle size and WTI.
View Article and Find Full Text PDFThe purpose of this study is to examine how co-pyrolysis of low-density polyethylene (LDPE) and rice husk is impacted by LDPE. It also looks into the physicochemical characteristics, thermal behavior, and kinetic parameters of these materials. To understand the thermal behavior through TGA, rice husk and LDPE blends in the ratios of LDPE: RH (50:50), LDPE: RH (25:75), and LDPE: RH (75:25) were prepared and tested.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
To explore the effects of the components in the raw materials and by-products of co-pyrolysis on the physicochemical properties of biochar, rice husk (RH, which has a high percentage of lignin and a low content of N) and sawdust (SD, which has a high percentage of both cellulose and N) were used as typical raw materials to prepare co-pyrolysis biochar. The benzene vapor adsorption performance of the obtained biochar was then tested on a fixed-bed device. At the same time, the by-product components generated during pyrolysis were analyzed using thermogravimetric (TG), scanning electron microscopy (SEM), and gas chromatography-mass spectrometry (GC-MS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!