Role of polyurethane-modified layered double hydroxides on SCFAs extraction from waste activated sludge fermentation liquid for elevating denitrification: Kinetics and mechanism.

Environ Res

College of Environmental Science and Engineering, Taiyuan University of Technology, 79 Yingzexi Road, Taiyuan, 030024, PR China; Shanxi Engineer Research Institute of Sludge Disposition and Resources, 79 Yingzexi Road, Taiyuan, 030024, PR China. Electronic address:

Published: August 2020

Extraction of short-chain fatty acids (SCFAs) from fermentation liquid of waste activated sludge (WAS) is the key bottleneck hindering its application as electron donor in denitrification. This study explores the feasibility of polyether-type polyurethane (PU)-modified layered double hydroxides (LDHs, prepared using eggshell waste as calcium source) in SCFAs adsorbing from WAS fermentation liquid (SFL). The adsorption parameters were first optimized by adsorption tests using artificial fermentation liquid (AFL). Then, adsorption kinetics, thermodynamic and isotherms were explored to further understand the adsorption mechanism. It revealed that SCFAs absorption by PU-LDHs from SFL was an endothermic and spontaneous process with positive enthalphy (ΔH) values and negative Gibbs free energy (ΔG) values. In addition, the maximum adsorption capacity of 208.0 mg SCFAs/g PU-LDHs was obtained from the Langmuir isotherm. Noting that both soluble carbohydrates and soluble proteins were simultaneously extracted, with efficiencies of 30.9%, 6.2%, respectively, compared with 62.9% SCFAs. The reuse tests confirmed that the prepared PU-LDHs can be used at least three times with high adsorptive capacity. With PU-LDHs-loaded SFL as external carbon source in the biodenitrification process, a denitrification rate of 0.014 mg NO-N/mg mixed liquid suspended solids (MLSS)·d was recorded. This study provided a sound basis for the preparation of cost-effective biodenitrification carbon source from SFL by a novel adsorbent.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2020.109696DOI Listing

Publication Analysis

Top Keywords

fermentation liquid
16
layered double
8
double hydroxides
8
waste activated
8
activated sludge
8
carbon source
8
scfas
5
liquid
5
adsorption
5
role polyurethane-modified
4

Similar Publications

Ultrasound-Assisted Enzymatic Extraction of the Active Components from Stem and Bioactivity Comparison with .

Molecules

January 2025

Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Hexing Road 26, Harbin 150040, China.

(ASC) contains a variety of bioactive compounds and serves as an important traditional Chinese medicinal resource. However, its prolonged growth cycle and reliance on wild populations limit its practical use. To explore the potential of (ASF) as an alternative, this study focused on optimizing the extraction process and assessing the bioactivity of stem extracts.

View Article and Find Full Text PDF

Recovery of Phenolic Compounds with Antioxidant Capacity Through Solid-State Fermentation of Pistachio Green Hull.

Microorganisms

December 2024

Biotechnology and Bioengineering Laboratory, Centro de Investigación en Alimentación y Desarrollo, Delicias 33089, Chihuahua, Mexico.

Pistachio green hull (PGH) represents the non-edible fraction obtained after the seed is harvested and is an important source of phenolic compounds. Solid-state fermentation (SSF) is a viable biotechnological and economical technique for extracting phenolic compounds. This study aimed to evaluate the SSF with GH1 to recover total phenolic compounds (TPC) with antioxidant capacity (AC) from PGH.

View Article and Find Full Text PDF

Simultaneous Determination of Three Active Forms of Vitamin B12 In Situ Produced During Fermentation by LC-MS/MS.

Foods

January 2025

Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.

The in situ fortification of vitamin B12 (VB12) in foods through fermentation is an effective strategy to address the deficiency of this micronutrient, and precise monitoring of VB12 production is crucial for developing VB12-fortified functional foods. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is advantageous for analyzing trace substances in food due to its high sensitivity. In the present study, an LC-MS/MS method capable of rapidly and accurately quantifying three active forms of VB12, namely adenosylcobalamin (AdoCbl), methylcobalamin (MeCbl), hydroxocobalamin (OHCbl), in 8 min were developed.

View Article and Find Full Text PDF

Enhancing dark fermentative biohydrogen and VFA production via ozone pre-treatment.

Bioresour Technol

January 2025

Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, IVAGRO-Wine and Agrifood Research Institute, University of Cadiz, 11510 Puerto Real, Cadiz, Spain.

This study investigates the effects of ozone pre-treatment on two types of organic wastes: secondary sludge (SS) and wine vinasse (WV). Ozone pre-treatment of SS, a semi-solid waste, significantly increased the Dissolved Organic Carbon (DOC) and Total Volatile Fatty Acids (TVFAs) through hydrolysis. Conversely, ozone pre-treatment of WV, a liquid organic waste, reduced the availability of soluble biodegradable substrates and decreased the concentration of carboxylic acids with carbon chain length higher than 4.

View Article and Find Full Text PDF

Preparation of halloysite nanotube-based monolithic column for small molecules and protein analysis.

J Chromatogr B Analyt Technol Biomed Life Sci

January 2025

College of Life Science, Hebei Agricultural University, Baoding, Hebei 071001, China; Hebei Forage Microbial Technology Innovation Center, Baoding, Hebei 071001, China; Hebei Agriculture Waste Resource Utilization Engineering Research Center, Baoding, Hebei 071001, China. Electronic address:

s: This study aimed to prepare a new separation medium, silane coupling agent KH570- modified halloysite nanotube (MPS-HNT) monolithic column, with excellent separation performance for small molecular compounds and macromolecular proteins. This was prepared using the principle of redox polymerization with modified HNTs as monomers. The optimal monomer proportion was obtained by optimizing the ratio of monomer, cross-linker, and pore-forming agent, which was evaluated using scanning electron microscopy, nitrogen adsorption, and mercury intrusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!