A uniformly distribution of 3 wt.% Mo (with tetrahedral coordination) on a commercial HY zeolite having both micro- and meso-pores, provided a new active catalyst which resulted 100% removal of DBT in this work. Respectively, HO and acetonitrile were used as the oxidant and extraction solvent for oxidative desulfurization (ODS) at a mild condition. The structure of three-dimensional meso-pores, despite major micro-pores, was proved to be intriguing for the use of acidic HY zeolite as a support material in this process. The catalyst samples were characterized by different analyses of XRPD, XRF, FTIR, SEM, EDX, TEM, N adsorption desorption, BET, BJH, UV-vis, and NH-TPD. High amounts of Mo were not in favor of the catalytic performance because of increasing non-framework polymolybdate formation, which led to decreasing meso-pore volume. Acid sites strength also decreased by increasing Mo content. The Mo active sites at a low loading of 3 wt.% reached the best performance for the complete removal of DBT (t = 90 min, T = 60 °C, catalyst/fuel = 8 g/L, O/S = 2, V/V = 1/2, DBT = 1000 ppm), mainly due to the presence of isolated Mo species in the framework of HY. The efficiency still reached to 90% after recycling the catalyst three times. The reusability of catalyst revealed the adsorption of the aqueous phase by this hydrophilic catalyst during the process being as a major deactivation factor. This was significantly diminished via a subsequent washing by acetonitrile.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-020-09266-2 | DOI Listing |
Cells
December 2024
Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India.
The quest for cleaner and sustainable energy sources is crucial, considering the current scenario of a steep rise in energy consumption and the fuel crisis, exacerbated by diminishing fossil fuel reserves and rising pollutants. In particular, the bioaccumulation of hazardous substances like trivalent chromium has not only disrupted the fragile equilibrium of the ecological system but also poses significant health hazards to humans. Microalgae emerged as a promising solution for achieving sustainability due to their ability to remediate contaminants and produce greener alternatives such as biofuels.
View Article and Find Full Text PDFSci Total Environ
December 2024
State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China.
Autochthonous fungal bioaugmentation (AFB) is a promising strategy for the microbial remediation of petroleum hydrocarbon (PH)-contaminated soils. However, the mechanisms underlying AFB, particularly for degrading recalcitrant PH components, are not fully understood. This study employed stable isotope probing (SIP) and high-throughput sequencing to investigate the AFB mechanisms of two hydrocarbon-degrading fungi, Fusarium solani LJD-11 and Aspergillus fumigatus LJD-29, focusing on three challenging PH components: n-Hexadecane (n-Hex), Benzo[a]pyrene (BaP), and Dibenzothiophene (DBT).
View Article and Find Full Text PDFJ Eat Disord
November 2024
Department of Psychology and Neuroscience, School of Clinical Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.
Background: Despite the increasing use of dialectical behaviour therapy (DBT) as a treatment for eating disorders (EDs), there is little published evidence of its effectiveness for treating restrictive eating disorders. DBT for EDs may be particularly helpful for those who live with severe and enduring eating disorders (SE-EDs) given that it targets those for whom first-line treatments have not been effective, its focus on factors thought to maintain symptoms and its focus on improving quality of life. This study sought to evaluate the experiences of participants in a comprehensive DBT programme for people with SE-EDs.
View Article and Find Full Text PDFRSC Adv
November 2024
School of Materials and Chemical Engineering, Hubei University of Technology Wuhan 430068 People's Republic of China
Through a simple room-temperature process, different amounts of Keggin-type quaternary ammonium silicotungstate were successfully encapsulated into the metal-organic framework (MOF) material ZIF-67. The catalysts were characterized using Fourier transform infrared (FT-IR) spectroscopy, X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and BET analysis. An extraction and catalytic oxidation desulfurization system was studied using HO as an oxidant and a deep eutectic solvent (DES) as an extractant.
View Article and Find Full Text PDFA facile hydrothermal approach was employed to synthesize a novel Cu-ZnO/TiO Z-heterojunction with a high density of defects, which was then utilized for the oxidative desulfurization process, demonstrating excellent photodegradation performance. The results showed that by adjusting components such as Cu, ZnO, and TiO, the removal efficiency of DBT reached 88.12% within a duration of 240 min.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!