The core regulatory networks and hub genes regulating flower development in Chrysanthemum morifolium.

Plant Mol Biol

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.

Published: August 2020

The study has facilitated important insights into the regulatory networks involved in flower development in chrysanthemum (Asteraceae), and is informative with respect to the mechanism of flower shape determination. Chrysanthemum morifolium, valued as an ornamental species given the diversity of its inflorescence form, is viewed as a model for understanding flower development in the Asteraceae. Yet, the underlying regulatory networks remain largely unexplored. Here, a transcriptomic survey of the Chrysanthemum morifolium variety 'Jinba' was undertaken to uncover the global gene expression profiles and identify the modules of co-transcribed genes associated with flower development. The weighted gene coexpression network analysis revealed important networks and hub genes including ray floret petals-specific coexpression network, disc floret petals-specific network, B and E class genes involved network and CYC2 genes network. Three ray floret petal-specific hub genes were also strongly transcribed in the ray florets of a selection of six diverse varieties and especially so in those which form ligulate ray floret petals. CmCYC2c was strongly transcribed in the distal and lateral regions of the ray floret petals, and also, along with CmCYC2d, in the tubular ray florets. Furthermore, CmOFP, belonging to the family of ovate proteins, was identified in the CYC2 genes network. CmOFP can interact with CmCYC2d that physically interact with CmCYC2c. This work provides important insights into the regulatory networks involved in flower development in chrysanthemum, and is informative with respect to the mechanistic basis of the regulation of flower shape.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11103-020-01017-8DOI Listing

Publication Analysis

Top Keywords

flower development
20
regulatory networks
16
ray floret
16
hub genes
12
development chrysanthemum
12
chrysanthemum morifolium
12
networks hub
8
insights regulatory
8
networks involved
8
involved flower
8

Similar Publications

Manipulation of WUSCHEL orthologue expression improves the forage yield and quality in Medicago.

Plant Biotechnol J

January 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao, China.

View Article and Find Full Text PDF

Phenolic compounds (PC) were analyzed by UHPLC-ESI-QTOF-MS in two sorghum genotypes, harvested in two growing seasons (GS) at five distinct days after flowering (DAF) to evaluate how genotype/GS influences the PC synthesis and antioxidant capacity during grain growth. Total phenolic contents were strongly correlated with antioxidant capacity ( > 0.9, < 0.

View Article and Find Full Text PDF

Melatonin is considered an effective bio-stimulant that is crucial in managing several abiotic stresses including drought. However, its potential mechanisms against drought stress in fragrant roses are not well understood. Here, we aim to investigate the role of melatonin on plants cultivated under drought stress (40 % field capacity) and normal irrigation (80 % field capacity).

View Article and Find Full Text PDF

Ginsenoside, a potential natural product against liver diseases: a comprehensive review from molecular mechanisms to application.

Crit Rev Food Sci Nutr

January 2025

Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China.

Liver disease constitutes a significant cause of global mortality, with its pathogenesis being multifaceted. Identifying effective pharmacological and preventive strategies is imperative for liver protection. Ginsenosides, the major bioactive compounds found in ginseng, exhibit multiple pharmacological activities including protection against liver-related diseases by mitigating liver fat accumulation and inflammation, preventing hepatic fibrosis, and exerting anti-hepatocarcinogenic effects.

View Article and Find Full Text PDF

From "traditional" to modern medicine: A medical and historical analysis of L. (Cempasúchil).

J Tradit Complement Med

January 2025

Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.

The medicinal value of herbal products is often rooted in their "traditional" use, recontextualized by modern biomedical research granting them certain medical uses. L. (Asteraceae), native to Mexico, exemplifies such historical developments of a species that played a key role in developing a major pharmacologically active compound - lutein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!