AI Article Synopsis

  • Recent research suggests that gut microbiome plays a significant role in obesity, with probiotics and synbiotics showing promise in weight loss and metabolic health through modulation of gut bacteria.
  • Although popular strains like Bifidobacterium and Lactobacillus are widely used, newer strains like Akkermansia and Faecalibacterium are also showing potential benefits; however, studies on prebiotics have yielded mixed results.
  • Limitations in current research include a lack of large human trials, diversity in study populations, and varying formulations, highlighting the need for more comprehensive studies on the safety and efficacy of these gut health agents.

Article Abstract

Purpose Of Review: In this review, we summarize current evidence on gut microbiome and obesity; we discuss the role of probiotics, prebiotics, synbiotics, and postbiotics in obesity prevention and management; and we highlight and analyze main limitations, challenges, and controversies of their use.

Recent Findings: Overall, the majority of animal studies and meta-analyses of human studies examining the use of probiotics and synbiotics in obesity has shown their beneficial effects on weight reduction and other metabolic parameters via their involvement in gut microbiota modulation. Bifidobacterium and Lactobacillus strains are still the most widely used probiotics in functional foods and dietary supplements, but next generation probiotics, such as Faecalibacterium prausnitzii, Akkermansia muciniphila, or Clostridia strains, have demonstrated promising results. On the contrary, meta-analyses of human studies on the use of prebiotics in obesity have yielded contradictory results. In animal studies, postbiotics, mainly short-chain fatty acids, may increase energy expenditure through induction of thermogenesis in brown adipose tissue as well as browning of the white adipose tissue. The main limitations of studies on biotics in obesity include the paucity of human studies; heterogeneity among the studied subgroups regarding age, gender, and lifestyle; and use of different agents with potential therapeutic effects in different formulations, doses, ratio and different pharmacodynamics/pharmacokinetics. In terms of safety, the supplementation with prebiotics, probiotics, and synbiotics has not been associated with serious adverse effects among immune-competent individuals, with the exception of the use of probiotics and synbiotics in immunocompromised patients. Further large-scale Randomized Controlled Trials (RCTs) in humans are required to evaluate the beneficial properties of probiotics, prebiotics, synbiotics, and postbiotics; their ideal dose; the duration of supplementation; and the durability of their beneficial effects as well as their safety profile in the prevention and management of obesity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13679-020-00379-wDOI Listing

Publication Analysis

Top Keywords

probiotics prebiotics
12
prebiotics synbiotics
12
synbiotics postbiotics
12
human studies
12
probiotics synbiotics
12
probiotics
8
postbiotics obesity
8
current evidence
8
prevention management
8
main limitations
8

Similar Publications

Gut Microbiota and Diabetes: Pioneering New Treatment Frontiers.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Lovely Professional University, Panjab, 144001, India.

Diabetes Mellitus (DM) is a complex metabolic disorder characterized by chronic hyperglycemia and poses significant global health challenges. Conventional treatments, such as insulin therapy and lifestyle modifications, have shown limited efficacy in addressing the multifactorial nature of DM. Emerging evidence suggests that gut microbiota, a diverse community of microorganisms critical for metabolism and immune function, plays a pivotal role in metabolic health.

View Article and Find Full Text PDF

We have previously demonstrated that subgingival levels of nitrate-reducing bacteria, as well as the in vitro salivary nitrate reduction capacity (NRC), were diminished in periodontitis patients, increasing after periodontal treatment. However, it remains unclear if an impaired NRC in periodontitis can affect systemic health. To determine this, the effect of nitrate-rich beetroot juice (BRJ) on blood pressure was determined in 15 periodontitis patients before and 70 days after periodontal treatment (i.

View Article and Find Full Text PDF

Date seed polysaccharides were utilized to synthesize selenium nanoparticles (MPS-NP) through a redox reaction involving sodium selenite and ascorbic acid. Characterization of MPS-NP showed a uniform, amorphous, spherical shape with a particle size of 89.2 nm, remaining stable for 42 days.

View Article and Find Full Text PDF

High-fat diet (HFD) consumption disrupts the gut microbiome, instigating metabolic disturbance, brain pathology, and cognitive decline via the gut-brain axis. Probiotic and prebiotic supplementation have been found to improve gut microbiome health, suggesting they could be effective in managing neurodegenerative disorders. This study explored the potential benefits of the probiotic strain Lactobacillus plantarum 20174 (L.

View Article and Find Full Text PDF

This review paper analyzes recent advancements in bio-polymer coatings for probiotic microencapsulation, with a particular emphasis on chitosan and its synergistic combinations with other materials. Probiotic microencapsulation is essential for protecting probiotics from environmental stresses, enhancing their stability, and ensuring effective delivery to the gut. The review begins with an overview of probiotic microencapsulation, highlighting its significance in safeguarding probiotics through processing, storage, and gastrointestinal transit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!