This study was designed to evaluate the effect of the radiological technologists' training on optimising the eye lens dose in brain computed tomography (CT) examinations. The lens dose of 50 adult patients was measured using thermoluminescent dosimeters before and after technologists' training. Dose values of lenses, dose length product (DLP), volumetric CT dose index (CTDIvol) as well as image quality in terms of quantitative (contrast to noise ratio and signal to noise ratio) and subjective (artefact) parameters were compared before and after training. Lens dose values were 31.57 ± 9.84 mGy and 5.36 ± 1.53 mGy before and after training, respectively, which was reduced by ~83% (p < 0.05). The values of DLP, CTDIvol and image quality parameters were not significantly different (p > 0.05) and all images were diagnostically acceptable. Excluding the orbits from the scanning range is an efficient approach to optimize the lens dose; the training of the technologists has also a pivotal role in dose reducing.

Download full-text PDF

Source
http://dx.doi.org/10.1093/rpd/ncaa073DOI Listing

Publication Analysis

Top Keywords

lens dose
20
technologists' training
12
dose
9
eye lens
8
radiological technologists'
8
dose values
8
noise ratio
8
training
6
dose optimization
4
optimization gantry
4

Similar Publications

Background/objectives: Interventional radiology (IR) utilizing X-rays can lead to occupational radiation exposure, posing health risks for medical personnel in the field. We previously conducted a survey on the occupational radiation exposure of IR nurses in three designated emergency hospitals in Japan. Our findings indicated that a hospital with 214 beds showed a higher lens-equivalent dose than hospitals with 678 and 1182 beds because the distance between the X-ray irradiation field and the IR nurse's position of the hospital with 214 beds was shorter than those of 678 and 1182 beds.

View Article and Find Full Text PDF

A systematic review of the effectiveness of leaded glasses for ensuring safety among healthcare professionals in fluoroscopy.

J Med Imaging Radiat Sci

January 2025

Instituto Politécnico de Coimbra, ESTESC - Coimbra Health School, Medical Imaging and Radiotherapy, Rua 5 de Outubro, S. Martinho do Bispo, Coimbra 3046-854, Portugal. Electronic address:

Background: Currently, there is an increase in procedures across various clinical specialties involving the use of ionising radiation.

Objective: The primary objective of this systematic review is to analyse and compare the existing literature regarding the effectiveness of leaded glasses for healthcare professionals.

Methods: Comprehensive literature searches were conducted for relevant studies published between 2018 and 2023 using the Scopus, PubMed, and Web of Science databases according to preferred reporting items for systematic reviews and meta-analyses (PRISMA) methodology.

View Article and Find Full Text PDF

PE-CycleGAN network based CBCT-sCT generation for nasopharyngeal carsinoma adaptive radiotherapy.

Nan Fang Yi Ke Da Xue Xue Bao

January 2025

School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.

Objectives: To explore the synthesis of high-quality CT (sCT) from cone-beam CT (CBCT) using PE-CycleGAN for adaptive radiotherapy (ART) for nasopharyngeal carcinoma.

Methods: A perception-enhanced CycleGAN model "PE-CycleGAN" was proposed, introducing dual-contrast discriminator loss, multi-perceptual generator loss, and improved U-Net structure. CBCT and CT data from 80 nasopharyngeal carcinoma patients were used as the training set, with 7 cases as the test set.

View Article and Find Full Text PDF

Eye lens dosimetry: does the direction of rotation (vertical or horizontal) play a role in type testing?

J Radiol Prot

January 2025

Physikalisch-Technische Bundesanstalt, Bundesallee 100, D-38116 Braunschweig, Germany.

With the International Commission on Radiological Protection (ICRP) lowering the annual dose limit for the eye lens to 20 mSv, precise monitoring of eye lens exposure has become essential. The personal dose equivalent at a depth of 3 mm,(3), is the measurement method for monitoring the dose to the lens of the eye. Usual dosemeter type-test irradiations at non-normal angles of radiation incidence (≠ 0°) primarily use lateral radiation exposure scenarios, where radiation approaches from the left or right, necessitating rotation of the dosemeter-phantom setup around a vertical axis.

View Article and Find Full Text PDF

As the second most populated country in Africa, Ethiopia needs public health measures to control diseases that impact its population. The goal of this study is to analyse disease burdens of HBV and HCV, while also highlighting their estimated associated costs for the country. A literature review and a Delphi process reflecting input of Ethiopian experts and the National Viral Hepatitis Technical Working Group were used to complement mathematical modelling to estimate HBV and HCV disease and economic burdens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!