Primary myelofibrosis (PMF) is a myeloproliferative neoplasm (MPN) characterized by clonal myeloproliferation, progressive bone marrow (BM) fibrosis, splenomegaly, and anemia. BM fibrosis was previously thought to be a reactive phenomenon induced by mesenchymal stromal cells that are stimulated by the overproduction of cytokines such as transforming growth factor (TGF)-β1. However, the involvement of neoplastic fibrocytes in BM fibrosis was recently reported. In this study, we showed that the vast majority of collagen- and fibronectin-producing cells in the BM and spleens of Jak2V617F-induced myelofibrosis (MF) mice were fibrocytes derived from neoplastic hematopoietic cells. Neoplastic monocyte depletion eliminated collagen- and fibronectin-producing fibrocytes in BM and spleen, and ameliorated most characteristic MF features in Jak2V617F transgenic mice, including BM fibrosis, anemia, and splenomegaly, while had little effect on the elevated numbers of megakaryocytes and stem cells in BM, and leukothrombocytosis in peripheral blood. TGF-β1, which was produced by hematopoietic cells including fibrocytes, promoted the differentiation of neoplastic monocytes to fibrocytes, and elevated plasma TGF-β1 levels were normalized by monocyte depletion. Collectively, our data suggest that neoplastic fibrocytes are the major contributor to BM fibrosis in PMF, and TGF-β1 is required for their differentiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7862060 | PMC |
http://dx.doi.org/10.1038/s41375-020-0880-3 | DOI Listing |
Cell Physiol Biochem
December 2023
Theodor-Billroth-Academy®, Munich, Germany and Sacramento, CA, U.S.A.
Background/aims: Many questions in cancer biology remain unanswered. Perhaps the most important issues remaining to be addressed focus on the molecular basis of carcinogenesis. Today's cancer focus lies on genetics and gene expression, which is unlikely to explain the true cause of most cancers or lead to a cure.
View Article and Find Full Text PDFMedicina (Kaunas)
May 2023
General Surgery Department, Carol Davila Nephrology Hospital Bucharest, 020021 Bucharest, Romania.
The CD34 protein was identified almost four decades ago as a biomarker for hematopoietic stem cell progenitors. CD34 expression of these stem cells has been exploited for therapeutic purposes in various hematological disorders. In the last few decades, studies have revealed the presence of CD34 expression on other types of cells with non-hematopoietic origins, such as interstitial cells, endothelial cells, fibrocytes, and muscle satellite cells.
View Article and Find Full Text PDFPoult Sci
February 2023
Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:
The crop of pigeon has specific characteristics as producing crop milk in the lactating period. However, the exact mechanisms underlying the regulation of crop lactation remain unclear. miRNAs, the essential regulators of gene expression, are implicated in various physiological and biological activities.
View Article and Find Full Text PDFHaematologica
May 2023
State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin.
Apart from the central role of the activated JAK/STAT signaling pathway, ASXL1 mutations are the most recurrent additional mutations in myeloproliferative neoplasms and occur much more commonly in myelofibrosis than in essential thrombocythemia and polycythemia vera. However, the mechanism of the association with ASXL1 mutations and bone marrow fibrosis remains unknown. Here, integrating our own data from patients with myeloproliferative neoplasms and a hematopoietic-specific Asxl1 deletion/Jak2V617F mouse model, we show that ASXL1 mutations are associated with advanced myeloproliferative neoplasm phenotypes and onset of myelofibrosis.
View Article and Find Full Text PDFCell Death Dis
May 2022
Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Bone marrow (BM) fibrosis was thought to be induced exclusively by mesenchymal stromal cells (MSCs). However, we and others found that neoplastic fibrocytes induce BM fibrosis in myelofibrosis (MF). Because glioma-associated oncogene-1 (GLI1), an effector of the Hedgehog pathway, plays a role in the induction of BM fibrosis, we wondered whether GLI1 affects fibrocyte-induced BM fibrosis in MF.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!