A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterization of DNA Binding and Nuclear Retention Identifies Zebrafish IRF11 as a Positive Regulator of IFN Antiviral Response. | LitMetric

Characterization of DNA Binding and Nuclear Retention Identifies Zebrafish IRF11 as a Positive Regulator of IFN Antiviral Response.

J Immunol

State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;

Published: July 2020

In mammals, transcription factors of IFN-regulatory factors (IRFs) family translate viral recognition into IFN antiviral responses through translocating to nucleus and subsequently binding to the promoters of IFN and IFN-stimulated genes (ISGs). In addition to IRF1-9 conserved across vertebrates and IRF10 in teleost fish and bird, teleost fish has another novel member, IRF11; however, little is known about its role in IFN response. In this study, we provide evidence that IRF11 is present only in Osteichthyes (bony fish) but lost in tetrapods and subsequently characterize the stimulatory potential of zebrafish IRF11 to IFN antiviral response relevant to its subcellular localization and promoter binding. Overexpression of zebrafish IRF11 restricts virus replication through induction of IFN and ISGs. Zebrafish IRF11 is constitutively localized to nucleus, which is driven by a tripartite NLS motif, consisting of three interdependent basic clusters, two in DNA binding domain (DBD) and one in the region immediately C-terminal to DBD. Nuclear IRF11 binds to the IRF-binding element/IFN-stimulated response element motifs of zebrafish IFN promoters depending on the two conserved amino acids (K78, R82) within DBD helix α3. K78 and R82 also benefit zebrafish IRF11 nuclear import as two key residues positioned at the first basic cluster of the tripartite NLS motif. Such features enable zebrafish IRF11 to function as a positive transcription factor for fish IFN antiviral response. Our results identify a unique tripartite NLS motif that integrates DNA-binding activity and nuclear import ability, allowing zebrafish IRF11 to initiate IFN and ISG expression.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.2000245DOI Listing

Publication Analysis

Top Keywords

zebrafish irf11
28
ifn antiviral
16
antiviral response
12
tripartite nls
12
nls motif
12
irf11
10
ifn
9
dna binding
8
zebrafish
8
teleost fish
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!