Gut microbial metabolism is not only an important source of uremic toxins but may also help to maintain the vitamin K stores of the host. We hypothesized that sevelamer therapy, a commonly used phosphate binder in patients with end-stage kidney disease (ESKD), associates with a disturbed gut microbial metabolism. Important representatives of gut-derived uremic toxins, including indoxyl sulfate (IndS), p-Cresyl sulfate (pCS), trimethylamine N-oxide (TMAO), phenylacetylglutamine (PAG) and non-phosphorylated, uncarboxylated matrix-Gla protein (dp-ucMGP; a marker of vitamin K status), were analyzed in blood samples from 423 patients (65% males, median age 54 years) with ESKD. Demographics and laboratory data were extracted from electronic files. Sevelamer users ( = 172, 41%) were characterized by higher phosphate, IndS, TMAO, PAG and dp-ucMGP levels compared to non-users. Sevelamer was significantly associated with increased IndS, PAG and dp-ucMGP levels, independent of age, sex, calcium-containing phosphate binder, cohort, phosphate, creatinine and dialysis vintage. High dp-ucMGP levels, reflecting vitamin K deficiency, were independently and positively associated with PAG and TMAO levels. Sevelamer therapy associates with an unfavorable gut microbial metabolism pattern. Although the observational design precludes causal inference, present findings implicate a disturbed microbial metabolism and vitamin K deficiency as potential trade-offs of sevelamer therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7354623PMC
http://dx.doi.org/10.3390/toxins12060351DOI Listing

Publication Analysis

Top Keywords

microbial metabolism
16
uremic toxins
12
gut microbial
12
sevelamer therapy
12
dp-ucmgp levels
12
end-stage kidney
8
kidney disease
8
disease eskd
8
vitamin status
8
gut-derived uremic
8

Similar Publications

To regain infectivity, Trypanosoma brucei, the pathogen causing Human and Animal African trypanosomiasis, undergoes a complex developmental program within the tsetse fly known as metacyclogenesis. RNA-binding protein 6 (RBP6) is a potent orchestrator of this process, however, an understanding of its functionally important domains and their mutational constraints is lacking. Here, we perform deep mutational scanning of the entire RBP6 primary structure.

View Article and Find Full Text PDF

Versatile nitrate-respiring heterotrophs are previously concealed contributors to sulfur cycle.

Nat Commun

January 2025

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.

Heterotrophic denitrifiers play crucial roles in global carbon and nitrogen cycling. However, their inability to oxidize sulfide renders them vulnerable to this toxic molecule, which inhibits the key enzymatic reaction responsible for reducing nitrous oxide (NO), thereby raising greenhouse gas emissions. Here, we applied microcosm incubations, community-isotope-corrected DNA stable-isotope probing, and metagenomics to characterize a cohort of heterotrophic denitrifiers in estuarine sediments that thrive by coupling sulfur oxidation with denitrification through chemolithoheterotrophic metabolism.

View Article and Find Full Text PDF

Objectives: Oral and periodontal health have been linked to systemic health, cardiovascular disease and inflammation markers. Physical fitness has been linked to increased inflammatory response, but only few studies have investigated the association between oral health with physical activity. The aim of this study was to evaluate the association between oral and periodontal health status and physical fitness in British law enforcement workers.

View Article and Find Full Text PDF

Elucidation and biosynthesis of tetrahydroisoquinoline alkaloids: Recent advances and prospects.

Biotechnol Adv

January 2025

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.. Electronic address:

Tetrahydroisoquinoline alkaloids (THIAs) are a prominent class of plant-derived compounds with various important pharmaceutical applications. Considerable progress has been made in the biosynthesis of THIAs in microorganisms due to the elucidation of their natural biosynthetic pathways and the discovery of key enzymes. In this review, we systematically summarize recent progress in elucidating the natural biosynthetic pathways of THIAs and their biosynthesis in industrial microorganisms.

View Article and Find Full Text PDF

Betulinic acid from Inonotus obliquus ameliorates T2DM by modulating short-chain fatty acids producing bacteria and amino acids metabolism in db/db mice.

J Ethnopharmacol

January 2025

National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China. Electronic address:

Ethnopharmacological Relevance: Inonotus obliquus has also been used as a traditional folk medicine in Europe and Northeastern China to treat metabolic diseases. Betulinic acid (BA) is a major ingredient with anti-diabetic property derived from I. obliquus, however, its bioavailability is limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!