Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sparse dictionary learning (SDL) is a classic representation learning method and has been widely used in data analysis. Recently, the ℓ m -norm ( m ≥ 3 , m ∈ N ) maximization has been proposed to solve SDL, which reshapes the problem to an optimization problem with orthogonality constraints. In this paper, we first propose an ℓ m -norm maximization model for solving dual principal component pursuit (DPCP) based on the similarities between DPCP and SDL. Then, we propose a smooth unconstrained exact penalty model and show its equivalence with the ℓ m -norm maximization model. Based on our penalty model, we develop an efficient first-order algorithm for solving our penalty model (PenNMF) and show its global convergence. Extensive experiments illustrate the high efficiency of PenNMF when compared with the other state-of-the-art algorithms on solving the ℓ m -norm maximization with orthogonality constraints.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308875 | PMC |
http://dx.doi.org/10.3390/s20113041 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!