A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An Efficient Orthonormalization-Free Approach for Sparse Dictionary Learning and Dual Principal Component Pursuit. | LitMetric

An Efficient Orthonormalization-Free Approach for Sparse Dictionary Learning and Dual Principal Component Pursuit.

Sensors (Basel)

State Key Laboratory of Scientific and Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing 100049, China.

Published: May 2020

Sparse dictionary learning (SDL) is a classic representation learning method and has been widely used in data analysis. Recently, the ℓ m -norm ( m ≥ 3 , m ∈ N ) maximization has been proposed to solve SDL, which reshapes the problem to an optimization problem with orthogonality constraints. In this paper, we first propose an ℓ m -norm maximization model for solving dual principal component pursuit (DPCP) based on the similarities between DPCP and SDL. Then, we propose a smooth unconstrained exact penalty model and show its equivalence with the ℓ m -norm maximization model. Based on our penalty model, we develop an efficient first-order algorithm for solving our penalty model (PenNMF) and show its global convergence. Extensive experiments illustrate the high efficiency of PenNMF when compared with the other state-of-the-art algorithms on solving the ℓ m -norm maximization with orthogonality constraints.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308875PMC
http://dx.doi.org/10.3390/s20113041DOI Listing

Publication Analysis

Top Keywords

ℓ -norm
16
-norm maximization
12
penalty model
12
sparse dictionary
8
dictionary learning
8
dual principal
8
principal component
8
component pursuit
8
orthogonality constraints
8
maximization model
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!