High-performance asymmetric supercapacitor based hierarchical NiCoO@ carbon nanofibers//Activated multichannel carbon nanofibers.

Nanotechnology

Renewable Energy Science and Engineering Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni- Suef University, Beni-Suef 62511, Egypt. Materials Science and Engineering Department, Egypt-Japan University of Science and Technology, Alexandria 21934, Egypt.

Published: May 2020

Synthesis of rational nanostructure design of hybrid materials including uniformly growing, stable and highly porous structures have received a great deal of attention for many energy storage applications. In this study, the positive electrode of the uniform distribution of NiCoO nanorods anchored on carbon nanofibers has been successfully prepared by in-situ growth under the hydrothermal process. Whereas, the activated multichannel carbon nanofibers (AMCNFs) have been fabricated via electrospinning followed by alkaline activation as the negative electrode. The crystal phase, morphological structure for the proposed electrode materials were characterized by x-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Moreover, the electrochemical behaviors were investigated using cyclic voltammetry (CV), galvanostatic charge and discharge (GCD) and electrochemical impedance spectroscopy (EIS) measurements. Compared to the neat CNFs and the pristine NiCoO, the NiCoO@CNFs hybrid electrodes showed better electrochemical performance and achieved a high specific capacitance up to 649 F g at a current density of 3 A g. The optimized NiCoO@CNFs//AMCNFs asymmetric device achieved a high energy density of 38.5 Wh kg with a power density of 1.6 kW kg and possessed excellent recyclability with 93.1% capacitance retention over 6000 charging/discharging cycles. Overall, the proposed study introduces a facile strategy for the robust design of hybrid structured as effective nanomaterials based electrode for high-performance electrochemical supercapacitors.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ab97d6DOI Listing

Publication Analysis

Top Keywords

carbon nanofibers
12
multichannel carbon
8
design hybrid
8
electron microscopy
8
achieved high
8
high-performance asymmetric
4
asymmetric supercapacitor
4
supercapacitor based
4
based hierarchical
4
hierarchical nicoo@
4

Similar Publications

Flexible Phase Change Materials with High Energy Storage Density Based on Porous Carbon Fibers.

Polymers (Basel)

December 2024

Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.

Phase change fibers (PCFs) can effectively store and release heat, improve energy efficiency, and provide a basis for a wide range of energy applications. Improving energy storage density and preserving flexibility are the primary issues in the efficient manufacture and application development of PCFs. Herein, we have successfully fabricated a suite of flexible PCFs with high energy storage density, which use hollow carbon fibers (HCFs) encapsulated phase change materials (PCMs) to provide efficient heat storage and release, thereby enhancing energy efficiency and underpinning a broad range of energy applications.

View Article and Find Full Text PDF

Bimetallic NiCr nanoparticles decorated on carbon nanofibers (NiCr@CNFs) were synthesized through electrospinning and investigated as catalysts for hydrogen generation from the dehydrogenation of sodium borohydride (SBH). Four distinct compositions were prepared, with chromium content in the catalysts ranging from 5 to 25 weight percentage (wt%). Comprehensive characterization confirmed the successful formation of bimetallic NiCr@CNFs.

View Article and Find Full Text PDF

As a sustainable alternative technology to the cost- and energy-intensive Haber-Bosch method, electrochemical nitrogen (N) reduction offers direct conversion of N to NH under ambient conditions. Direct use of noble metals or non-noble metals as electrocatalytic materials results in unsatisfactory electrocatalytic properties because of their low electrical conductivity and stability. Herein, three-dimensional flexible carbon nanofiber (CNF/TiO@CoS) nanostructures were prepared on the surface of CNF by using electrospinning, a hydrothermal method, and in situ growth.

View Article and Find Full Text PDF

Nickel disulfide (NiS) nanoparticles are encapsulated within nitrogen and sulfur co-doped carbon nanosheets, which are grown onto carbon nanofibers to form an array structure (NiS/C@CNF), resulting in a self-supporting film. This encapsulated structure not only prevents the agglomeration of NiS nanoparticles, but also memorably buffers its volume changes during charge/discharge cycles, thereby maintaining structural integrity. The nitrogen and sulfur co-doping enhances electronic conductivity and facilitates the faster ion transport of the carbon backbone, improving the low conductivity of the NiS/C@CNF anodes.

View Article and Find Full Text PDF

Near-Field Direct Write Electrospinning of PET-Carbon Quantum Dot Solutions.

Materials (Basel)

December 2024

Materials Science and Engineering Group, Department of Materials and Production, Aalborg University, 9220 Aalborg, Denmark.

Electrospinning of polymer material has gained a lot of interest in the past decades. Various methods of electrospinning have been applied for different applications, from needle electrospinning to needleless electrospinning. A relatively new variation of electrospinning, namely near-field electrospinning, has been used to generate well-defined patterns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!