Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
RGB-Infrared (IR) person re-identification is very challenging due to the large cross-modality variations between RGB and IR images. Considering no correspondence labels between every pair of RGB and IR images, most methods try to alleviate the variations with set-level alignment by reducing marginal distribution divergence between the entire RGB and IR sets. However, this set-level alignment strategy may lead to misalignment of some instances, which limit the performance for RGB-IR Re-ID. Different from existing methods, in this paper, we propose to generate cross-modality paired-images and perform both global set-level and fine-grained instance-level alignments. Our proposed method enjoys several merits. First, our method can perform set-level alignment by disentangling modality-specific and modality-invariant features. Compared with conventional methods, ours can explicitly remove the modality-specific features and the modality variation can be better reduced. Second, given cross-modality unpaired-images of a person, our method can generate cross-modality paired images from exchanged features. With them, we can directly perform instance-level alignment by minimizing distances of every pair of images. Third, our method learns a latent manifold space. In the space, we can random sample and generate lots of images of unseen classes. Training with those images, the learned identity feature space is more smooth can generalize better when test. Finally, extensive experimental results on two standard benchmarks demonstrate that the proposed model favorably against state-of-the-art methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neunet.2020.05.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!