Tropomyosin (Tpm) is a two-stranded parallel α-helical coiled-coil protein, and studying its structure is crucial for understanding the nature of coiled coils. Previously, we found that the N-terminal half of the human skeletal muscle α-Tpm (α-Tpm 140) was less structurally stable in the presence of phosphate ions than the coiled-coil protein carrier (CCPC) 140 variant with 18 mutated residues, in which all amino acid residues located at the interface between the two α-helices were completely conserved. A classical hypothesis explains that interhelical interactions stabilize the coiled-coil structure. In this study, we tested the hypothesis that the structural stability of Tpm and its variant is governed by the binding of multivalent ions that form a bridge between charged side chains located at positions , , and of the heptad repeat on a single α-helical chain. We found that the structural stability of α-Tpm 140 and CCPC 140 markedly increased upon addition of divalent cations and divalent anions, respectively. We also clarified that the structural stability of the α-Tpm 140/CCPC 140 heteromeric coiled-coil molecule was governed by the stability of a less stable α-helical chain. These results demonstrated that the entire structural stability of Tpm is determined by the stability of a single α-helix. Our findings provide new insights into the study of the structure of coiled-coil proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biochem.0c00203DOI Listing

Publication Analysis

Top Keywords

structural stability
20
coiled-coil protein
8
α-tpm 140
8
ccpc 140
8
stability tpm
8
α-helical chain
8
stability α-tpm
8
stability
7
structural
5
coiled-coil
5

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Sharp Therapeutics, Pittsburgh, PA, USA.

Background: Progranulin (GRN) plays a critical role in familial frontotemporal dementia (fFTD), where GRN haploinsufficiency leads to reduction in PGRN levels in the brain, resulting in degeneration of neurons in the frontal lobe of brain responsible for personality, language, and behavior. FTD is the most common dementia in people under 60. Sortilin (Sort1), expressed by neurons, endocytoses, and delivers PGRN rapidly to lysosomes for degradation.

View Article and Find Full Text PDF

Background: There are no cures for Alzheimer's disease (AD), a progressive neurodegenerative disorder characterized by elevation of beta-amyloid and tau proteins besides neuronal death and causing cognitive impairment. Phosphodiesterase 5 (PDE5) is a cyclic guanosine monophosphate-degrading enzyme involved in numerous biological pathways including those relevant to memory formation. PDE5 inhibition offers the potential to attenuate AD progression by acting at the downstream level of beta-amyloid and tau elevation.

View Article and Find Full Text PDF

Cezanne-2 (Cez2) is a deubiquitinylating (DUB) enzyme involved in the regulation of ubiquitin-driven cellular signaling and selectively targets Lys11-linked polyubiquitin chains. As a representative member of the ovarian tumor (OTU) subfamily DUBs, it performs cysteine proteolytic isopeptide bond cleavage; however, its exact catalytic mechanism is not yet resolved. In this work, we used different computational approaches to get molecular insights into the Cezanne-2 catalytic mechanism.

View Article and Find Full Text PDF

Green separation of protein (e.g., bovine serum albumin (BSA)) by low-melting mixture solvents (LoMMSs) depends on the underlying mechanism between BSA and LoMMSs.

View Article and Find Full Text PDF

Chiral allyl amines are important structural components in natural products, pharmaceuticals, and chiral catalysts. Herein, we report a cobalt-catalyzed enantioselective reductive coupling of imines with internal alkynes to synthesize chiral allyl amines. The reaction is catalyzed by a cobalt complex derived from commercially available bisphosphine ligand utilizing zinc as the electron donor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!