Background: Measurement of the reactive hyperemia index (RHI) using peripheral arterial tonometry (PAT) has shown benefits in the evaluation of vascular endothelial function and prediction of cardiovascular disease prognosis. Thus, it is important to examine the factors that promote the RHI. In this study, we aimed to investigate the effect of molecular hydrogen (H2) on reactive hyperemia-PAT of the small arteries of fingers in healthy people.
Methods: To determine the efficacy of H2 for improving peripheral vascular endothelial function, water containing high H2 concentrations was administered to participants, and the Ln_RHI was measured in the finger vasculature. Sixty-eight volunteers were randomly divided into two groups: a placebo group (n = 34) that drank molecular nitrogen (N2)-containing water and a high H2 group (n = 34) that drank high H2 water (containing 7 ppm of H2: 3.5 mg H2 in 500-mL water). The Ln_RHI was measured before ingesting the placebo or high H2 water, 1 h and 24 h after the first ingestion, and 14 days after daily ingestion of high H2 water or the placebo. The mixed effects model for repeated measures was used in data analysis.
Results: The high H2 group had a significantly greater improvement in Ln_RHI than the placebo group. Ln_RHI improved by 22.2% (p<0.05) at 24 h after the first ingestion of high H2 water and by 25.4% (p<0.05) after the daily consumption of high H2 water for 2 weeks.
Conclusions: Daily consumption of high H2 water improved the endothelial function of the arteries or arterioles assessed by the PAT test. The results suggest that the continuous consumption of high H2 water contributes to improved cardiovascular health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7259729 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0233484 | PLOS |
Mol Ther
January 2025
Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address:
Gene therapy with Adeno-Associated Virus (AAV) vectors requires knowledge of their tropism within the body. Here we analyze the tropism of ten naturally occurring AAV serotypes (AAV3B, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAVrh8, AAVrh10 and AAVrh74) following systemic delivery into male and female mice. A transgene expressing ZsGreen and Cre recombinase was used to identify transduction in a cell-dependent manner based on fluorescence.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital. Electronic address:
Retinal vein occlusion (RVO) has become the second most common retinal vascular disease after diabetic retinopathy. Existing therapeutic approaches, including intravitreal injection of antivascular endothelial growth factors (anti-VEGFs) and/or glucocorticoids and laser therapy, primarily address secondary macular edema and neovascularisation. However, these strategies do not address the underlying cause of the disease and may have harmful side effects.
View Article and Find Full Text PDFAdv Colloid Interface Sci
January 2025
Breakthrough Technologies, Deakin, ACT, Australia.
The glycocalyx and its associated endothelial surface layer which lines all cell membranes and most tissues, dwarfs the phospholipid membrane of cells in extent. Its major components are sulphated polymers like heparan and chondroitin sulphates and hyaluronic acid. These form a fuzzy layer of unknown structure and function.
View Article and Find Full Text PDFSci China Life Sci
January 2025
Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
Lymphangioleiomyomatosis (LAM) is a rare neoplastic disease affecting the lung, kidney, and lymphatic system with a molecular mechanism of tuberous sclerosis complex 2 (TSC2) mutations. Vascular endothelial growth factor D (VEGF-D), a ligand for vascular endothelial growth factor receptor 3 (VEGFR3), is a diagnostic biomarker of LAM and is associated with lymphatic circulation abnormalities. This study explored the interaction between LAM cells and lymphatic endothelial cells (LECs) and the effects of rapamycin on this interaction, which may help to identify new targets for LAM treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!