A single experiment required 40 younger and older adults to discriminate global shape as depicted by Glass patterns (concentric and radial organizations). Such patterns have been widely used for decades, because in order to successfully perceive the depicted shape, the visual system has to detect both locally oriented features (dipoles) and their alignments across extended regions of space. In the current study, we manipulated the number of constituent dipoles in the stimulus patterns (40 or 200), the noise-to-signal ratio (zero, 1.0, & 5.0), and the pattern size (6.0 & 25.0 degrees visual angle). The observers' shape discrimination accuracies (d' values) decreased markedly as the amount of noise increased, and there were smaller (but significant) effects of both overall pattern size and the number of stimulus dipoles. Interestingly, while there was a significant effect of age, it was relatively small: the overall d' values for older and younger adults were 2.07 and 2.34, respectively. Older adults therefore retain an effective ability to visually perceive global shape, even for sparsely-defined patterns embedded in noise.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7259570 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0233786 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!