Microplastic occurrence and composition were investigated along the Polish coast (southern Baltic Sea) on 12 beaches differing in terms of intensity of their touristic exploitation, urbanisation and sediment characteristics. Their mean concentrations varied between 76 and 295 items per kg dry sediment. Fibres and plastic fragments were the dominant microplastic types. Overall, no relationship was found between their concentrations and sediment characteristics. Fine sediments were not identified as microplastic pollution traps. The highest microplastic concentrations were recorded at some urban beaches indicating that population density and the level of coastal infrastructure development are important factors affecting microplastic pollution level on beaches. On the other hand, microplastic concentrations in national parks did not differ substantially from the other beaches. Our results suggest that sediment accumulation processes may exceed microplastic accumulation, and overcome the effect of tourism and/or urbanisation, highlighting the role of the beach hydrodynamic status in structuring beach microplastic pollution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2020.111170 | DOI Listing |
Sci Rep
December 2024
British Antarctic Survey, High Cross, Madingley Road, Cambridge, UK.
Marine microplastic is pervasive, polluting the remotest ecosystems including the Southern Ocean. Since this region is already undergoing climatic changes, the additional stress of microplastic pollution on the ecosystem should not be considered in isolation. We identify potential hotspot areas of ecological impact from a spatial overlap analysis of multiple data sets to understand where marine biota are likely to interact with local microplastic emissions (from ship traffic and human populations associated with scientific research and tourism).
View Article and Find Full Text PDFSci Rep
December 2024
Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Microplastic is one of the most important environmental challenges of recent decades. Although the abundance of microplastics in water sources and water bodies such as the marine were investigated in many studies, knowing the sources of microplastics requires more studies. In this study, litter was investigated as one of the challenges of urban management and the sources of primary microplastic and secondary microplastic in the urban environment.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Resource Recirculation Research Division, National Institute of Environmental Research, Incheon, 22689, Republic of Korea. Electronic address:
Globally, various policies are being implemented to phase out plastic, and South Korea has set targets to reduce waste and increase recycling rates by 2030. Concerns about managing microplastic pollution are growing. Most advanced research has primarily focused on aquatic ecosystems.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730030, PR China; The Second Clinical School, Lanzhou University, Lanzhou, Gansu, 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, 730030, PR China. Electronic address:
Polyethylene terephthalate microplastics (PET-MPs) have emerged as a significant environmental concern due to their persistence and potential health hazards. Their role in degenerative diseases, particularly intervertebral disc degeneration (IVDD), remains poorly understood, highlighting the need for systematic evaluation of their molecular toxicity. In this study, network toxicology and molecular docking approaches were applied to investigate the toxicological mechanisms of PET-MPs-induced IVDD.
View Article and Find Full Text PDFJ Environ Manage
December 2024
College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China. Electronic address:
Agricultural mulch is beneficial to agricultural production, but it will cause serious environmental pollution. Poly(butylene adipate-co-terephthalate) (PBAT) mulch has the potential to replace PE mulch to reduce the microplastic pollution in farmland soil. To clarify the effects of the aging behavior of PBAT mulch on soil microbial community composition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!