Improvements of material removal in cortical bone via impact cutting method.

J Mech Behav Biomed Mater

Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1138656, Japan. Electronic address:

Published: August 2020

Bone cutting with high efficiency as well as low levels of forces and damage has a great significance for orthopaedic surgeries. Due to the brittleness and anisotropy of cortical bone, a conventional cutting process can cause irregular crack propagation and fractured bone chip, affecting the tissue removal process and postoperative recovery. In this paper, a high-frequency impact cutting method is investigated, and its effect on fracture propagation, chip formation and cutting forces is studied for orthogonal cutting. Experimental results show that cracks are deflected by cement lines in conventional cutting, forming fractured blocks or split chips. In impact cutting, the cutting-induced fractures expand along a main shear direction, generating small pieces of triangular segmented chips. Cutting forces are significantly reduced with vibration-induced impacts; especially, the main cutting force is nearly 70% lower than that in the conventional cutting. The main reason for this is much higher strain rates in high-frequency impact cutting than in a conventional process, and direct penetration of fractures across the osteonal matrix without deflections along the cement lines. This results in a straighter path along the main shear plane and totally different chip morphology; so, a lower consumption of cutting energy in the main shear direction reduces the macroscopic cutting force. The results of this study have an important theoretical and practical value for revealing the mechanism of impact cutting, improving the efficiency of osteotomy and supporting the innovation in bone surgical instruments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2020.103791DOI Listing

Publication Analysis

Top Keywords

impact cutting
20
cutting
15
conventional cutting
12
main shear
12
cortical bone
8
cutting method
8
high-frequency impact
8
cutting forces
8
cement lines
8
shear direction
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!