Doing Spin Physics with Unpolarized Particles.

Phys Rev Lett

School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519082, China.

Published: May 2020

Twisted, or vortex, particles refer to freely propagating non-plane-wave states with helicoidal wave fronts. In this state, the particle possesses a nonzero orbital angular momentum with respect to its average propagation direction. Twisted photons and electrons have been experimentally demonstrated, and creation of other particles in twisted states can be anticipated. If brought in collisions, twisted states offer a new degree of freedom to particle physics, and it is timely to analyze what new insights may follow. Here, we theoretically investigate resonance production in twisted photon collisions and twisted e^{+}e^{-} annihilation and show that these processes emerge as a completely novel probe of spin and parity-sensitive observables in fully inclusive cross sections with unpolarized initial particles. This is possible because the initial state with a nonzero angular momentum explicitly breaks the left-right symmetry even when averaging over helicities. In particular, we show how one can produce almost 100% polarized vector mesons in unpolarized twisted e^{+}e^{-} annihilation and how to control its polarization state.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.124.192001DOI Listing

Publication Analysis

Top Keywords

particles twisted
8
angular momentum
8
twisted states
8
collisions twisted
8
twisted e^{+}e^{-}
8
e^{+}e^{-} annihilation
8
twisted
7
spin physics
4
physics unpolarized
4
particles
4

Similar Publications

Nematic versus Kekulé Phases in Twisted Bilayer Graphene under Hydrostatic Pressure.

Phys Rev Lett

December 2024

Instituto de Ciencia de Materiales de Madrid, CSIC, E-28049 Madrid, Spain.

We address the precise determination of the phase diagram of magic angle twisted bilayer graphene under hydrostatic pressure within a self-consistent Hartree-Fock method in real space, including all the remote bands of the system. We further present a novel algorithm that maps the full real-space density matrix to a 4×4 density matrix based on a SU(4) symmetry of sublattice and valley degrees of freedom. We find a quantum critical point between a nematic and a Kekulé phase, and show also that our microscopic approach displays a strong particle-hole asymmetry in the weak coupling regime.

View Article and Find Full Text PDF

Hydrogels are natural/synthetic polymer-based materials with a large percentage of water content, usually above 80 %, and are suitable for many application fields such as wearable sensors, biomedicine, cosmetics, agriculture, etc. However, their performance is susceptible to environmental changes in temperature, relative humidity, and mechanical deformation due to their aqueous and soft nature. We investigate the mechanical response of both filled and unfilled alginate/gellan hydrogels using a combined axial-torsional rheometric approach with cylindrical samples of large length/diameter ratio under controlled temperature and relative humidity.

View Article and Find Full Text PDF

The chiral lattice structure of twisted bilayer graphene with D_{6} symmetry allows for intrinsic photogalvanic effects only at off-normal incidence, while additional extrinsic effects are known to be induced by a substrate or a gate potential. In this Letter, we first compute the intrinsic effects and show they reverse sign at the magic angle, revealing a band inversion at the Γ point. We next consider different extrinsic effects, showing how they can be used to track the strengths of the substrate coupling or electric displacement field.

View Article and Find Full Text PDF

Emergent Symmetry and Valley Chern Insulator in Twisted Double-Bilayer Graphene.

Phys Rev Lett

December 2024

Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78758, USA.

Theoretical calculations show that twisted double bilayer graphene (TDBG) under a transverse electric field develops a valley Chern number 2 at charge neutrality. Using thermodynamic and thermal activation measurements we report the experimental observation of a universal closing of the charge neutrality gap in the Hofstadter spectrum of TDBG at 1/2 magnetic flux per unit cell, in agreement with theoretical predictions for a valley Chern number 2 gap. Our theoretical analysis of the experimental data shows that the interaction energy, while larger than the flat-band bandwidth in TDBG near 1° does not alter the emergent valley symmetry or the single-particle band topology.

View Article and Find Full Text PDF

Numerical simulation study on the influence of bend diameter rate on the flow characteristics of nature gas hydrate particles.

Sci Rep

December 2024

Jiangsu Key Laboratory of Oil-Gas Storage and Transportation Technology, Changzhou University, Changzhou, 213164, Jiangsu, China.

Bend pipe is a common part of long distance pipeline. There is very important to study the flow law of hydrate particles in the bend pipe, and pipeline design will be optimized. In addition, the efficiency and safety of pipeline gas transmission will be improved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!